首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2012年   2篇
  2011年   1篇
  2008年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
Classic methods of biosurfactant separation are difficult and require large amounts of organic solvents, thus generate high amounts of waste. This work presents and discusses in detail an original procedure to separate rhamnolipid from fermentation broth using high performance membrane techniques. Due to the unique properties of surface active agents, such as capability of forming aggregates above the critical micelle concentration, it is possible to easily purify the biosurfactant with high efficacy using inexpensive and commonly used membranes. In this article, two-stage ultrafiltration is proposed as a method for separating and purifying rhamnolipid from the culture medium. The obtained purified rhamnolipid solution was capable of reducing surface tension of water down to 28.6 mN/m at critical micelle concentration of 40 mg/l. Separation of rhamnolipid was confirmed by HPLC; three types of rhamnolipids were identified (RL1, RL2, RL4), with considerable predominance of RL2.  相似文献   
3.
Deletion of the highly conserved gene for the major Ca2+ efflux pump, Plasma membrane calcium/calmodulin‐dependent ATPase 4b (Pmca4b), in the mouse leads to loss of progressive and hyperactivated sperm motility and infertility. Here we first demonstrate that compared to wild‐type (WT), Junctional adhesion molecule‐A (Jam‐A) null sperm, previously shown to have motility defects and an abnormal mitochondrial phenotype reminiscent of that seen in Pmca4b nulls, exhibit reduced (P < 0.001) ATP levels, significantly (P < 0.001) greater cytosolic Ca2+ concentration ([Ca2+]c) and ~10‐fold higher mitochondrial sequestration, indicating Ca2+ overload. Investigating the mechanism involved, we used co‐immunoprecipitation studies to show that CASK (Ca2+/calmodulin‐dependent serine kinase), identified for the first time on the sperm flagellum where it co‐localizes with both PMCA4b and JAM‐A on the proximal principal piece, acts as a common interacting partner of both. Importantly, CASK binds alternatively and non‐synergistically with each of these molecules via its single PDZ (PDS‐95/Dlg/ZO‐1) domain to either inhibit or promote efflux. In the absence of CASK–JAM‐A interaction in Jam‐A null sperm, CASK–PMCA4b interaction is increased, resulting in inhibition of PMCA4b's enzymatic activity, consequent Ca2+ accumulation, and a ~6‐fold over‐expression of constitutively ATP‐utilizing CASK, compared to WT. Thus, CASK negatively regulates PMCA4b by directly binding to it and JAM‐A positively regulates it indirectly through CASK. The decreased motility is likely due to the collateral net deficit in ATP observed in nulls. Our data indicate that Ca2+ homeostasis in sperm is maintained by the relative ratios of CASK–PMCA4b and CASK–JAM‐A interactions. J. Cell. Physiol. 227: 3138–3150, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   
4.
Germline stem cells (GSCs) can be used for large animal transgenesis, in which GSCs that are genetically manipulated in vitro are transplanted into a recipient testis to generate donor‐derived transgenic sperm. The objectives of this study were to explore a non‐viral approach for transgene delivery into goat GSCs and to investigate the efficiency of nucleofection in producing transgenic sperm. Four recipient goats received fractionated irradiation at 8 weeks of age to deplete endogenous GSCs. Germ cell transplantations were performed 8–9 weeks post‐irradiation. Donor cells were collected from testes of 9‐week‐old goats, enriched for GSCs by Staput velocity sedimentation, and transfected by nucleofection with a transgene construct harboring the human growth hormone gene under the control of the goat beta‐casein promoter (GBC) and a chicken beta‐globin insulator (CBGI) sequence upstream of the promoter. For each recipient, transfected cells from 10 nucleofection reactions were pooled, mixed with non‐transfected cells to a total of 1.5 × 108 cells in 3 ml, and transplanted into one testis (n = 4 recipients) by ultrasound‐guided cannulation of the rete testis. The second testis of each recipient was removed. Semen was collected, starting at 9 months after transplantation, for a period of over a year (a total of 62 ejaculates from four recipients). Nested genomic PCR for hGH and CBGI sequences demonstrated that 31.3% ± 12.6% of ejaculates were positive for both hGH and CBGI. This study provides proof‐of‐concept that non‐viral transfection (nucleofection) of primary goat germ cells followed by germ cell transplantation results in transgene transmission to sperm in recipient goats. Mol. Reprod. Dev. 79: 255–261, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   
5.
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号