首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   482篇
  免费   48篇
  2024年   1篇
  2023年   5篇
  2022年   5篇
  2021年   14篇
  2020年   7篇
  2019年   6篇
  2018年   21篇
  2017年   14篇
  2016年   19篇
  2015年   17篇
  2014年   29篇
  2013年   31篇
  2012年   42篇
  2011年   56篇
  2010年   26篇
  2009年   16篇
  2008年   20篇
  2007年   25篇
  2006年   23篇
  2005年   27篇
  2004年   22篇
  2003年   11篇
  2002年   15篇
  2001年   9篇
  2000年   4篇
  1999年   9篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   6篇
  1991年   2篇
  1988年   3篇
  1987年   3篇
  1986年   8篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1979年   2篇
  1977年   1篇
  1974年   4篇
  1973年   1篇
  1970年   2篇
  1968年   1篇
排序方式: 共有530条查询结果,搜索用时 31 毫秒
1.
An in vitro splicing system was constructed using portions of chicken delta-crystallin pre-mRNA synthesized in vitro and a HeLa nuclear extract. Analysis of the reaction products revealed that about 25% of the pre-mRNA was precisely spliced at 30 degrees C in 2 h under the standard conditions. The other major products of the reaction detected were a 5'-exon fragment and three RNA species showing unusual electrophoretic mobilities on polyacrylamide gels. Structural analyses showed that these three RNAs contain a branch (lariat) structure as seen in the in vitro splicing reactions of human beta-globin, adenovirus, and yeast pre-mRNAs. In addition, methylation at the N-7 position of the blocking guanosine of the 5'-terminal cap structure of pre-mRNA has been suggested to play an important role in the splicing reaction.  相似文献   
2.
GTP:mRNA guanylyltransferase, an enzyme that catalyzes the transfer of the GMP moiety from GTP to the 5' end of the RNA to form a cap structure (G(5')pppN-), has been purified to an apparent homogeneity from Saccharomyces cerevisiae. The mRNA 5'-triphosphatase activity hydrolyzing the gamma-phosphoryl group from pppN-RNA was co-purified with mRNA guanylyltransferase activity through column chromatographies on CM-Sephadex and poly(U)-Sepharose, and centrifugation through glycerol gradients, suggesting that these two activities are physically associated. An 820,w value of 7.3, and Mr = 140,000 were estimated from the sedimentation behavior in glycerol gradients. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two major polypeptides, Mr = 45,000 (alpha) and 39,000 (beta), were detected with the purified enzyme preparation. Their molar ratios were close to unity when estimated by the relative density of silver staining. These results suggest that the yeast mRNA-capping enzyme is an oligomeric protein which may consist of two alpha and two beta chains (alpha 2 beta 2).  相似文献   
3.
4.
5.
The ram gene encodes a GTP-binding protein with a M(r) of 25,068 (Nagata, K., Satoh, T., Itoh, H., Kozasa, T., Okano, Y., Doi, T., Kaziro, Y., and Nozawa, Y. (1990) FEBS Lett. 275, 29-32). It has a putative effector domain very similar to that of yeast SEC4 protein, and shares 40% identity and 60% homology with it, respectively. In order to analyze the biochemical properties, ram cDNA was engineered and inserted into a bacterial expression vector; this allowed the production at a high level of soluble recombinant ram p25 in Escherichia coli. The purified ram p25 contained an equimolar amount of GDP. The purified protein bound approximately 1 mol of [35S]guanosine 5'-O-(thiotriphosphate) GTP gamma S)/mol of protein, with a Kd value of 120 nM. [35S]GTP gamma S binding to this protein was inhibited by GTP and GDP, but not by ATP and ADP. In the presence of 10 mM Mg2+, the dissociation of [8,5'-3H]GDP and [35S]GTP gamma S from ram p25 occurred with rates of 0.015 min-1 and 0.004 min-1, respectively, showing that the ram p25 has a higher affinity for GTP than GDP. The rate of release of Pi from [gamma-32P]GTP-bound ram p25 was calculated to be 0.011 min-1. The contribution of guanine nucleotide-binding and GTP-hydrolysis domains of the protein to its biochemical activities was investigated by site-directed mutagenesis. Substitution of Val for Gly at position 19 resulted in disappearance of [35S]GTP gamma S- and [3H]GDP-binding activity in spite of good expression of the protein. Mutations of Thr41 to Ser, Ala76 to Thr, and Asn133 to His slightly increased the rates of [35S] GTP gamma S binding and [3H]GDP dissociation, but had almost no effects on the manner of [gamma-32P]GTP hydrolysis. Replacement of Gln78 with Leu significantly increased the [3H]GDP dissociation rate (7-fold) and decreased GTP hydrolytic activity considerably.  相似文献   
6.
Summary Repopulative activity of hemopoietic stem cells of mice given i.v. 5 kBq239Pu/mouse (166.5 kBq/kg) was followed. The activity retained was measured in the whole mouse, the skeleton and the liver. Simultaneously average cumulative skeletal dose was calculated. Quantitative parameters of the stem cell compartment and the marrow cellularity were studied in variously arranged bones (femur, pelvis, lumbar vertebra) using the exocolonizing test and cytological techniques. The effects of radiation were most marked in lumbar vertebra, less serious changes were found in pelvis and only a moderate response was present in femur. The bone marrow hemopoiesis is damaged in various bone sites to different degrees and the percentage of cells at risk appears higher in trabecular than in cortical bone.  相似文献   
7.

Fewer than 1% of vertebrate species are hermaphroditic, and essentially all of these are fishes. Four types of hermaphroditism are known in fishes: simultaneous (or synchronous) hermaphroditism (SH), protandry (male-to-female sex change; PA), protogyny (female-to-male sex change; PG), and bidirectional sex change (BS or reversed sex change in protogynous species). Here we present an annotated list of hermaphroditic fish species from a comprehensive review and careful re-examination of all primary literature. We confirmed functional hermaphroditism in more than 450 species in 41 families of 17 teleost orders. PG is the most abundant type (305 species of 20 families), and the others are much less abundant, BS in 66 species of seven families, SH in 55 species of 13 families, and PA in 54 species of 14 families. The recently proposed phylogenetic tree indicated that SH and PA have evolved several times in not-closely related lineages of Teleostei but that PG (and BS) has evolved only in four lineages of Percomorpha. Examination of the relation between hermaphroditism type and mating system in each species mostly supported the size-advantage model that predicts the evolution of sequential hermaphroditism. Finally, intraspecific variations in sexual pattern are discussed in relation to population density, which may cause variation in mating system.

  相似文献   
8.
Technical aspects of creating an arteriovenous fistula in the mouse are discussed. Under general anesthesia, an abdominal incision is made, and the aorta and inferior vena cava (IVC) are exposed. The proximal infrarenal aorta and the distal aorta are dissected for clamp placement and needle puncture, respectively. Special attention is paid to avoid dissection between the aorta and the IVC. After clamping the aorta, a 25 G needle is used to puncture both walls of the aorta into the IVC. The surrounding connective tissue is used for hemostatic compression. Successful creation of the AVF will show pulsatile arterial blood flow in the IVC. Further confirmation of successful AVF can be achieved by post-operative Doppler ultrasound.  相似文献   
9.
MgADP inhibition, which is considered as a part of the regulatory system of ATP synthase, is a well-known process common to all F1-ATPases, a soluble component of ATP synthase. The entrapment of inhibitory MgADP at catalytic sites terminates catalysis. Regulation by the ε subunit is a common mechanism among F1-ATPases from bacteria and plants. The relationship between these two forms of regulatory mechanisms is obscure because it is difficult to distinguish which is active at a particular moment. Here, using F1-ATPase from Bacillus subtilis (BF1), which is strongly affected by MgADP inhibition, we can distinguish MgADP inhibition from regulation by the ε subunit. The ε subunit did not inhibit but activated BF1. We conclude that the ε subunit relieves BF1 from MgADP inhibition.  相似文献   
10.
The ability to generate and design antibodies recognizing specific targets has revolutionized the pharmaceutical industry and medical imaging. Engineering antibody therapeutics in some cases requires modifying their constant domains to enable new and altered interactions. Engineering novel specificities into antibody constant domains has proved challenging due to the complexity of inter‐domain interactions. Covarying networks of residues that tend to cluster on the protein surface and near binding sites have been identified in some proteins. However, the underlying role these networks play in the protein resulting in their conservation remains unclear in most cases. Resolving their role is crucial, because residues in these networks are not viable design targets if their role is to maintain the fold of the protein. Conversely, these networks of residues are ideal candidates for manipulating specificity if they are primarily involved in binding, such as the myriad interdomain interactions maintained within antibodies. Here, we identify networks of evolutionarily‐related residues in C‐class antibody domains by evaluating covariation, a measure of propensity with which residue pairs vary dependently during evolution. We computationally test whether mutation of residues in these networks affects stability of the folded antibody domain, determining their viability as design candidates. We find that members of covarying networks cluster at domain‐domain interfaces, and that mutations to these residues are diverse and frequent during evolution, precluding their importance to domain stability. These results indicate that networks of covarying residues exist in antibody domains for functional reasons unrelated to thermodynamic stability, making them ideal targets for antibody design. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号