首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
  2020年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   5篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有34条查询结果,搜索用时 46 毫秒
1.
The Drosophila neuralized (neur) gene belongs to the neurogenic group of genes involved in regulating cell-cell interactions required for neural precursor development. neur mutant phenotypes include strong overcommitment to neural fates at the expense of epidermal fates. The human neuralized homolog (NEURL) has been recently determined and found to map to chromosome 10q25.1 within the region frequently deleted in malignant astrocytomas. Because of its potential importance in developmental processes, we analyzed the structure of the mouse homolog, Neurl, and its expression pattern in embryonic tissues. Neurl activity is detected from early developmental stages in several tissues and organs including neural tissues, limbs, the skeletal system, sense organs and internal organs undergoing epithelial-mesenchymal interactions. Neurl encodes a polypeptide associated with the plasma membrane but also detected in the cytoplasm. Similarly to the Drosophila gene, mammalian neuralized may code for an important regulatory factor.  相似文献   
2.
Recent studies have shown that the pulp of human teeth contains a population of cells with stem cell properties and it has been suggested that these cells originate from pericytes. Molecules of the Notch signaling pathway regulate stem cell fate specification, while Rgs5 represents an excellent marker for pericytes. Pathological conditions such as dental trauma and carious lesion stimulate pulp stem cells to elaborate reparative dentin. Previous studies have shown that genes involved in the Notch pathway are activated in response to pulp injury in rodent and humans. To demonstrate the importance of pericytes as a source of stem cells during dental repair, we have studied Rgs5 and Notch3 mRNA expression by in situ hybridization in developing, adult intact and injured rodent teeth. Furthermore, we have examined the distribution of Notch3 protein in carious and injured human teeth using immunohistochemistry. Overlapping expression patterns of Rgs5 and Notch3 were observed during rodent tooth development as well as immediately after injury. Both genes were expressed in vascular structures during development and in perivascular and single capillary cells of injured teeth. However, the expression patterns of Rgs5 and Notch3 were different during tooth repair, with relatively extensive Rgs5 expression along the pericyte-vascular smooth muscle cell axis in central pulp arterioles. These results show co-expression of Rgs5 and Notch3 in pericytes of developing and injured teeth and furthermore indicate the importance of vascular-derived stem cells during pulp healing.  相似文献   
3.
The aim of this study was to evaluate the behavior of human Dental Pulp Stem Cells (DPSCs), as well as human osteoblasts, when challenged on a Biocoral scaffold, which is a porous natural hydroxyapatite. For this purpose, human DPSCs were seeded onto a three-dimensional (3D) Biocoral scaffold or on flask surface (control). Either normal or rotative (3D) cultures were performed. Scanning electron microscopic analyses, at 8, 24 and 48 h of culture showed that cells did not adhere on the external surface, but moved into the cavities inside the Biocoral structure. After 7, 15 and 30 days of culture, morphological and molecular analyses suggested that the Biocoral scaffold leads DPSCs to hook into the cavities where these cells quickly start to secrete the extra cellular matrix (ECM) and differentiate into osteoblasts. Control human osteoblasts also moved into the internal cavities where they secreted the ECM. Histological sections revealed a diffuse bone formation inside the Biocoral samples seeded with DPSCs or human osteoblasts, where the original scaffold and the new secreted biomaterial were completely integrated and cells were found within the remaining cavities. In addition, RT-PCR analyses showed a significant increase of osteoblast-related gene expression and, above all, of those genes highly expressed in mineralized tissues, including osteocalcin, OPN and BSP. Furthermore, the effects on the interaction between osteogenesis and angiogenesis were observed and substantiated by ELISA assays. Taken together, our results provide clear evidence that DPSCs differentiated into osteoblasts, forming a biocomplex made of Biocoral, ECM and differentiated cells.  相似文献   
4.
Teeth constitute a promising source of stem cells that can be used for tissue engineering and regenerative medicine purposes. Bone loss in the craniofacial complex due to pathological conditions and severe injuries could be treated with new materials combined with human dental pulp stem cells (hDPSCs) that have the same embryonic origin as craniofacial bones. Optimising combinations of scaffolds, cells, growth factors and culture conditions still remains a great challenge. In the present study, we evaluate the mineralisation potential of hDPSCs seeded on porous silk fibroin scaffolds in a mechanically dynamic environment provided by spinner flask bioreactors. Cell-seeded scaffolds were cultured in either standard or osteogenic media in both static and dynamic conditions for 47 days. Histological analysis and micro-computed tomography of the samples showed low levels of mineralisation when samples were cultured in static conditions (0.16±0.1 BV/TV%), while their culture in a dynamic environment with osteogenic medium and weekly µCT scans (4.9±1.6 BV/TV%) significantly increased the formation of homogeneously mineralised structures, which was also confirmed by the elevated calcium levels (4.5±1.0 vs. 8.8±1.7 mg/mL). Molecular analysis of the samples showed that the expression of tooth correlated genes such as Dentin Sialophosphoprotein and Nestin were downregulated by a factor of 6.7 and 7.4, respectively, in hDPSCs when cultured in presence of osteogenic medium. This finding indicates that hDPSCs are able to adopt a non-dental identity by changing the culture conditions only. Also an increased expression of Osteocalcin (1.4x) and Collagen type I (1.7x) was found after culture under mechanically dynamic conditions in control medium. In conclusion, the combination of hDPSCs and silk scaffolds cultured under mechanical loading in spinner flask bioreactors could offer a novel and promising approach for bone tissue engineering where appropriate and rapid bone regeneration in mechanically loaded tissues is required.  相似文献   
5.
Innervation plays a key role in the development, homeostasis and regeneration of organs and tissues. However, the mechanisms underlying these phenomena are not well understood yet. In particular, the role of innervation in tooth development and regeneration is neglected.Several in vivo studies have provided important information about the patterns of innervation of dental tissues during development and repair processes of various animal models. However, most of these approaches are not optimal to highlight the molecular basis of the interactions between nerve fibres and target organs and tissues.Co-cultures constitute a valuable method to investigate and manipulate the interactions between nerve fibres and teeth in a controlled and isolated environment. In the last decades, conventional co-cultures using the same culture medium have been performed for very short periods (e.g., two days) to investigate the attractive or repulsive effects of developing oral and dental tissues on sensory nerve fibres. However, extension of the culture period is required to investigate the effects of innervation on tooth morphogenesis and cytodifferentiation.Microfluidics systems allow co-cultures of neurons and different cell types in their appropriate culture media. We have recently demonstrated that trigeminal ganglia (TG) and teeth are able to survive for a long period of time when co-cultured in microfluidic devices, and that they maintain in these conditions the same innervation pattern that they show in vivo.On this basis, we describe how to isolate and co-culture developing trigeminal ganglia and tooth germs in a microfluidic co-culture system.This protocol describes a simple and flexible way to co-culture ganglia/nerves and target tissues and to study the roles of specific molecules on such interactions in a controlled and isolated environment.  相似文献   
6.
Teeth arise from sequential and reciprocal interactions between the oral epithelium and the underlying cranial neural crest‐derived mesenchyme. Their formation involves a precisely orchestrated series of molecular and morphogenetic events, and gives us the opportunity to discover and understand the nature of the signals that direct cell fates and patterning. For that reason, it is important to elucidate how signaling factors work together in a defined number of cells to generate the diverse and precise patterned structures of the mature functional teeth. Over the last decade, substantial research efforts have been directed toward elucidating the molecular mechanisms that control cell fate decisions during tooth development. These efforts have contributed toward the increased knowledge on dental stem cells, and observation of themolecular similarities that exist between tooth development andregeneration. Birth Defects Research (Part C) 87:199–211, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
7.
Recent advances in molecular and developmental genetics have provided tools for understanding evolutionary changes in the nature of the epithelial-mesenchymal interactions regulating the patterned outgrowth of the tooth primordia. Tissue recombination experiments in mice have identified the oral epithelium as providing the instructive information for the initiation of tooth development. Teeth were lost in birds for more than 80 million years ago, but despite their disappearance, a number of gene products and the requisite tissue interactions needed for tooth formation are found in the avian oral region. It is believed that the avian ectomesenchyme has lost the odontogenic capacity, whilst the oral epithelium retains the molecular signaling required to induce odontogenesis. In order to investigate the odontogenic capacity of the neural crest-derived mesenchyme and its potential activation of the avian oral epithelium, we have realized mouse neural tube transplantations to chick embryos to replace the neural crest cells of chick with those of mouse. Teeth are formed in the mouse/chick chimeras, indicating that timing is critical for the acquisition of the odontogenic potential by the epithelium and, furthermore, suggesting that odontogenesis is initially directed by species-specific mesenchymal signals interplaying with common epithelial signals.  相似文献   
8.
9.
Notch signaling is essential for the appropriate differentiation of many cell types during development and, furthermore, is implicated in a variety of human diseases. Previous studies have shown that although the Notch1, -2, and -3 receptors are expressed in developing and injured rodent teeth, Notch2 expression was predominant after a lesion. To pursue the role of the Notch pathway in tooth development and disease, we have analyzed the expression of the Notch2 protein in embryonic and adult wounded human teeth. During the earlier stages of tooth development, the Notch2 protein was expressed in the epithelium, but was absent from proliferating cells of the inner enamel epithelium. At more advanced stages, Notch2 was expressed in the enamel-producing ameloblasts, while it was absent in mesenchyme-derived odontoblasts that synthesize the dentin matrix. Although Notch2 was not expressed in the pulp of adult intact teeth, it was reexpressed during dentin repair processes in odontoblasts and subodontoblastic cells. Transforming growth factor beta-1, which stimulates odontoblast differentiation and hard tissue formation after dental injury, downregulated Notch2 expression in cultured human dental slices, in vitro. These observations are consistent with the notion that Notch signaling is an important element in dental physiological and pathogenic conditions.  相似文献   
10.
The formation of boundaries is a fundamental organizing principle during development. The Notch signalling pathway regulates this developmental patterning mechanism in many tissues. Recent data suggest that Notch receptors are involved in boundary determination during odontogenesis. It remains, however, uncertain if other components of the Notch pathway are also important for compartmental lineage restrictions in teeth. Here we report on the expression of the Lunatic fringe gene, which encodes a secreted signalling molecule regulating the Notch pathway, during the development of mouse teeth. Lunatic fringe is expressed in both epithelial and mesenchymal components of the developing molar. The expression pattern of Lunatic fringe in the epithelium is complementary to that of the Notch receptors. Lunatic fringe is asymmetrically expressed in the incisor epithelium during its antero-posterior rotation. This expression pattern defines the lingual comportment of the incisor epithelium whereas the labial comportment is defined by Notch2 expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号