首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   12篇
  国内免费   28篇
  2024年   3篇
  2023年   8篇
  2022年   7篇
  2021年   8篇
  2020年   11篇
  2019年   14篇
  2018年   6篇
  2017年   10篇
  2016年   9篇
  2015年   15篇
  2014年   15篇
  2013年   11篇
  2012年   7篇
  2011年   11篇
  2010年   6篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1995年   3篇
  1992年   1篇
  1990年   2篇
排序方式: 共有174条查询结果,搜索用时 15 毫秒
1.
小鼠脾细胞经重组人白细胞介素-2(rhIL-2)激活后对YAC-1,LP-3和WEHI-164等肿瘤细胞均有很强的杀伤活性。在CFU-E和BFU-E培养体系中,不同浓度LAK细胞与BMC直接加入或预温育4h后再培养,均能加强CFU-E和BFU-E增殖。低浓度LAK细胞(LAK/BMC为0.5)与BMC直接加入或预温育后再加入CFU-mix培养体系中,均能增强CFU-mix增殖,而高浓度LAK细胞和BMC(LAK/BMC=8.0)直接加入培养体系则抑制CFU-mix增殖;若共温育后再培养则非常明显地抑制CFU-mix增殖,CFU-mix仅为对照的17.6%。小鼠LAK细胞对造血祖细胞体外增殖具有调节作用,这种调节可能包括分泌某些细胞因子以及细胞间直接相互作用两种方式。  相似文献   
2.
一个恢复力受单基因控制的水稻CMS育性回复突变体   总被引:3,自引:0,他引:3  
利用 ̄(60)Co-γ射线对具有印尼水田谷细胞质的籼稻细胞质雄性不育系Ⅱ-32A干种子进行诱变处理,获得了一育性回复突变体T24。育性基因未纯合的突变体分离出可育株和完全不育株,比例为3∶1;其与Ⅱ-32A和珍汕97A测交,F1代分离出1∶1的可育株和不育株。育性稳定株系与Ⅱ-32A和珍汕97A杂交,F2分离成3∶1的可育株和不育株。表明其育性回复是由一对基因显性突变所致。这一突变体对不育系的育性恢复机制不同于明恢63、20964等恢复系,后者表现为两对显性恢复基因作用。未观察到T24与亲本Ⅱ-32A除育性以外的其他性状的差异,因而两者构成育性恢复基因的近等基因系。本文还对不育系育性回复类型和T24的理论意义与育种价值进行了讨论。  相似文献   
3.
副溶血弧菌是水产动物弧菌病的重要病原微生物之一,又是食源性致病菌,摄入被其污染的水产品后可引发肠胃炎、败血症和坏死性筋膜炎等疾病,对水产养殖业及公共卫生安全均具有较大威胁。抗生素大量使用甚至滥用,不可避免地会带来水产品药物残留和细菌耐药等问题,开发安全有效的抗生素替代品迫在眉睫。作为细菌病毒,噬菌体具有宿主特异性强、易筛选、易保存、高效直接等优点,在水产养殖病害防控和食品安全领域受到广泛关注。本文概述了水产动物的副溶血弧菌病及该菌噬菌体防治的研究进展,为副溶血弧菌噬菌体及制剂应用于水产养殖病害生物防控提供参考。  相似文献   
4.
5.
6.
7.
为明确黑芝麻多酚氧化酶的酶学性质,利用大肠杆菌Escherichia coli原核表达了黑芝麻多酚氧化酶 (Black sesame polyphenol oxidase,BsPPO)。将合成的基因构建至pMAL-c5x载体,并在大肠杆菌中进行表达,对重组蛋白进行分离纯化及融合标签切除,获得的BsPPO蛋白用于酶学性质探究。结果表明,合成的Bsppo基因1 752 bp,编码585个氨基酸,理论蛋白分子量为65.3 kDa;构建的pMAL-c5x-Bsppo重组质粒在大肠杆菌Escherichia coli BL21(DE3) 中可溶表达了MBP-BsPPO蛋白;酶切去除MBP融合标签后对BsPPO进行了酶学性质研究,结果表明BsPPO的最适温度和pH分别为25 ℃和4.0,在低温和弱酸性环境中有较好的稳定性。短时间低强度的光照和Cu2+可激活BsPPO的活性,Zn2+和Ca2+能抑制其活性。BsPPO可催化单酚、二酚以及三酚类化合物,对l-酪氨酸以及香草酸表现出较高的催化活性,此外BsPPO还对黑芝麻中含有的2-甲氧基肉桂酸、吲哚3-羧酸和根皮素表现出良好的催化活性。研究结果为黑芝麻多酚氧化酶酶学特性的明确奠定了理论基础。  相似文献   
8.
为发展新型面粉改良酶制剂,利用大肠杆菌Escherichia coli原核表达了小麦静息巯基氧化酶(Wheat quiescin sulfhydryl oxidase,wQSOX)。将合成的wqsox基因构建至pMAL-c5x载体,并在大肠杆菌中进行表达,优化蛋白表达条件后对重组蛋白进行分离纯化及融合标签切除,获得的重组wQSOX蛋白用于酶学性质探究以及面包品质改良。结果表明,合成的截短wqsox基因包含1359 bp,编码453个氨基酸,理论蛋白分子量51 kDa;构建的pMAL-c5x-wqsox重组质粒在E.coli Rosetta gamiB(DE3)中可溶表达了重组蛋白MBP-wQSOX,其最佳表达条件为:诱导温度25℃,诱导剂IPTG浓度0.3 mmol/L,诱导时间6 h;利用Xa因子蛋白酶切除了MBP融合标签,亲和层析纯化得到了wQSOX;wQSOX可催化DTT、GSH和Cys氧化,并伴随着H2O2的生成,其中对DTT表现出最高的底物特异性;酶学性质研究发现,wQSOX最适反应温度和pH分别为50℃和10.0,在高温和碱性环境条件下表现出较好的稳定性;每克面粉中添加1.1 U wQSOX能够显著(P<0.05)提高26.4%的面包比容,降低20.5%的面包芯硬度和24.8%的咀嚼性,表现出了较好的改良面包加工品质能力。研究结果对丰富新型面粉改良酶制剂种类以及推动wQSOX在焙烤行业的应用奠定了理论基础。  相似文献   
9.
The current in-depth proteomics makes use of long chromatography gradient to get access to more peptides for protein identification, resulting in covering of as many as 8000 mammalian gene products in 3 days of mass spectrometer running time. Here we report a fast sequencing (Fast-seq) workflow of the use of dual reverse phase high performance liquid chromatography - mass spectrometry (HPLC-MS) with a short gradient to achieve the same proteome coverage in 0.5 day. We adapted this workflow to a quantitative version (Fast quantification, Fast-quan) that was compatible to large-scale protein quantification. We subjected two identical samples to the Fast-quan workflow, which allowed us to systematically evaluate different parameters that impact the sensitivity and accuracy of the workflow. Using the statistics of significant test, we unraveled the existence of substantial falsely quantified differential proteins and estimated correlation of false quantification rate and parameters that are applied in label-free quantification. We optimized the setting of parameters that may substantially minimize the rate of falsely quantified differential proteins, and further applied them on a real biological process. With improved efficiency and throughput, we expect that the Fast-seq/Fast-quan workflow, allowing pair wise comparison of two proteomes in 1 day may make MS available to the masses and impact biomedical research in a positive way.The performance of mass spectrometry has been improved tremendously over the last few years (13), making mass spectrometry-based proteomics a viable approach for large-scale protein analysis in biological research. Scientists around the world are striving to fulfill the promise of identifying and quantifying almost all gene products expressed in a cell line or tissue. This would make mass spectrometry-based protein analysis an approach that is compatible to the second-generation mRNA deep-seq technique (4, 5).Two liquid chromatography (LC)-MS strategies have been employed to achieve deep proteome coverage. One is a single run with a long chromatography column and gradient to take advantage of the resolving power of HPLC to reduce the complexity of peptide mixtures; the other is a sequential run with two-dimensional separation (typically ion-exchange and reverse phase) to reduce peptide complexity. It was reported by two laboratories that 2761 and 4500 proteins were identified with a 10 h chromatography gradient on a dual pressure linear ion-trap orbitrap mass spectrometer (LTQ Orbitrap Velos)(68). Similarly, 3734 proteins were identified using a 8 h gradient on a 2 m long column with a hybrid triple quadrupole - time of flight (Q-TOF, AB sciex 5600 Q-TOF)(9) mass spectrometer. The two-dimensional approach has yielded more identification with longer time. For example, 10,006 proteins (representing over 9000 gene products, GPs)1 were identified in U2OS cell (10), and 10,255 proteins (representing 9207 GPs) from HeLa cells (11). It took weeks (for example, 2–3 weeks) of machine running time to achieve such proteome coverage, pushing proteome analysis to the level that is comparable to mRNA-seq. With the introduction of faster machines, human proteome coverage now has reached the level of 7000–8500 proteins (representing 7000–8000 GPs) in 3 days (12). Notwithstanding the impressive improvement, the current approach using long column and long gradient suffers from inherent limitations: it takes long machine running time and it is challenging to keep reproducibility among repeated runs. Thus, current throughput and reproducibility have hindered the application of in-depth proteomics to traditional biological researches. A timesaving approach is in urgent need.In this study, we used the first-dimension (1D) short pH 10 RP prefractionation to reduce the complexity of the proteome (13), followed by sequential 30 min second-dimension (2D) short pH 3 reverse phase-(RP)-LC-MS/MS runs for protein identification (14). The results demonstrated that it is possible to identify 8000 gene products from mammalian cells within 12 h of total MS measurement time by applying this dual-short 2D-RPLC-MS/MS strategy (Fast sequencing, Fast-seq). The robustness of the strategy was revealed by parallel testing on different MS systems including quadrupole orbitrap mass spectrometer (Q-Exactive), hybrid Q-TOF (Triple-TOF 5600), and dual pressure linear ion-trap orbitrap mass spectrometer (LTQ-Orbitrap Velos), indicating the inherent strength of the approach as to merely taking advantage of the better MS instruments. This strategy increases the efficiency of MS sequencing in unit time for the identification of proteins. We achieved identification of 2200 proteins/30 mins on LTQ-Orbitrap Velos, 2800 proteins/30 mins on Q-Exactive and Triple-TOF 5600 respectively. We further optimized Fast-seq and worked out a quantitative-version of the Fast-seq workflow: Fast-quantification (Fast-quan) and applied it for protein abundance quantification in HUVEC cell that was treated with a drug candidate MLN4924 (a drug in phase III clinical trial). We were able to quantify > 6700 GPs in 1 day of MS running time and found 99 proteins were up-regulated with high confidence. We expect this efficient alternative approach for in-depth proteome analysis will make the application of MS-based proteomics more accessible to biological applications.  相似文献   
10.
A dispersed particle gel (DPG) was successfully prepared from a polymer gel at room temperature. The polymer gel system, morphology, viscosity changes, size distribution, and zeta potential of DPG particles were investigated. The results showed that zirconium gel systems with different strengths can be cross-linked within 2.5 h at low temperature. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) results showed that the particles were polygonal particles with nano-size distribution. According to the viscosity changes, the whole preparation process can be divided into two major stages: the bulk gel cross-linking reaction period and the DPG particle preparation period. A polymer gel with a 3-dimensional network was formed in the bulk gel cross-linking reaction period whereas shearing force and frictional force were the main driving forces for the preparation of DPG particles, and thus affected the morphology of DPG particles. High shearing force and frictional force reduced the particle size distribution, and then decreased the zeta potential (absolute value). The whole preparation process could be completed within 3 h at room temperature. It could be an efficient and energy-saving technology for preparation of DPG particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号