首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2012年   3篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
排序方式: 共有12条查询结果,搜索用时 156 毫秒
1.
2.
3.
Thin current sheets, whose existence in the Earth’s magnetotail is confirmed by numerous spacecraft measurements, are studied analytically and numerically. The thickness of such sheets is on the order of the ion Larmor radius, and the normal component of the magnetic field (B z ) in the sheet is almost constant, while the tangential (B x ) and shear (B y ) components depend on the transverse coordinate z. The current density in the sheet also has two self-consistent components (j x and j y , respectively), and the magnetic field lines are deformed and do not lie in a single plane. To study such quasi-one-dimensional current configurations, two kinetic models are used, in particular, a numerical model based on the particle-in-cell method and an analytical model. The calculated results show that two different modes of the self-consistent shear magnetic field B y and, accordingly, two thin current sheet configurations can exist for the same input parameters. For the mode with an antisymmetric z profile of the B y component, the magnetic field lines within the sheet are twisted, whereas the profiles of the plasma density, current density component j y , and magnetic field component B x differ slightly from those in the case of a shearless magnetic field (B y = 0). For the symmetric B y mode, the magnetic field lines lie in a curved surface. In this case, the plasma density in the sheet varies slightly and the current sheet is two times thicker. Analysis of the dependence of the current sheet structure on the flow anisotropy shows that the sheet thickness decreases significantly with decreasing ratio between the thermal and drift plasma velocities, which is caused by the dynamics of quasi-adiabatic ions. It is shown that the results of the analytical and numerical models are in good agreement. The problems of application of these models to describe current sheets at the magnetopause and near magnetic reconnection regions are discussed.  相似文献   
4.
A system of kinetic equations describing relatively slow large-scale processes in collisionless magnetoplasma structures with a spatial resolution of about the characteristic gyroradius is derived. Plasma is assumed to be quasineutral, while the magnetic and electric fields are determined by the instantaneous distributions of the particle and current densities and the stress tensor of all plasma components in the longrange instantaneous interaction approximation. A special version of equations is derived for the case of magnetized electrons described by the Vlasov equation in the drift approximation. The obtained system of equations can be used to develop a global numerical kinetic model of the Earth’s magnetosphere with a spatial resolution of about 100 km, as well as local models of certain regions of the Earth’s magnetosphere with a higher resolution.  相似文献   
5.
6.
Plasma Physics Reports - A numerical model is used to study the possibility of a thin current sheet formation in the near-Earth magnetotail in the growth phase of a substorm for a wide range of...  相似文献   
7.
A possible mechanism for the formation of a quasi-equilibrium asymmetric current sheet in the magnetospheric tail due to the asymmetry of peripheral plasma sources is analyzed using a self-consistent particle- in-cell model of a thin collisionless current sheet with a constant normal magnetic field component. For the case in which the current sheet is produced by only one source, quasi-equilibrium sheet configurations with maximum possible asymmetry are obtained for different input parameters of the model. In such configurations, the equilibrium force balance is satisfied with high accuracy and the shape of the current density profile remains nearly symmetric, but the current sheet itself is slightly shifted from the source as compared to the symmetric case. The configurations obtained using numerical simulations are compared with those calculated using the previous analytical model of a thin current sheet. It is found that the results provided by these models agree well both qualitatively and quantitatively.  相似文献   
8.
A system of kinetic equations describing relatively slow large-scale processes in collisionless magnetoplasma structures with a spatial resolution on the order of the proton thermal gyroradius is derived. The system correctly takes into account the electrostatic effects in the approximation of field-aligned force equilibrium for electrons. The plasma is considered quasineutral, and the magnetic field is described by the Ampère equation. The longitudinal component of the electric field is found explicitly from the equality of the field-aligned component of the electric force acting on plasma electrons and the divergence of the electron pressure tensor. The electric field component orthogonal to the magnetic field is determined by the distributions of the number densities, current densities, and stress tensors of all plasma species in the instantaneous long-range approximation described by a system of time-independent elliptic equations. Versions of the system of equations adapted to the case of magnetized electrons described by the Vlasov equation in the drift approximation, as well as to the case in which all plasma species are magnetized, are derived. The resulting systems of equations allow creating numerical models capable of describing large-scale processes in nonuniform collisionless space plasma.  相似文献   
9.
The force balance in a thin collisionless current sheet in the Earth’s magnetotail with a given constant magnetic field component B z across the sheet is numerically studied for the first time in a self-consistent formulation of the problem. The current sheet is produced by oppositely directed plasma flows propagating from the periphery of the sheet toward the neutral plane. A substantially improved version of a macroparticle numerical model is used that makes it possible to simulate on the order of 107 macroparticles even with a personal computer and to calculate equilibrium configurations with a sufficiently low discrete noise level in the first-and second-order moments of the distribution function, which determine the stress tensor elements. Quasisteady configurations were calculated numerically for several sets of plasma parameters in some parts of the magnetotail. The force balance in the sheet was checked by calculating the longitudinal and transverse pressures as well as the elements of the full stress tensor. The stress tensor in the current sheet is found to be nondiagonal and to differ appreciably from the gyrotropic stress tensor in the Chew-Goldberger-Low model, although the Chew-Goldberger-Low theory and numerical calculations yield close results for large distances from the region of reversed magnetic field.  相似文献   
10.
There was offered a method of human stress-resistance evaluation via the dynamics of the regulatory-adaptive status. The regulatory-adaptive status was being determined via the parameters of the cardiorespiratory synchronism in the original state and at the application of the stress factor. Individuals, whose regulatory-adaptive status didn't change or decreased by not more than 5-6% at the exposition to the stress factor formed the group with a high level of stress-resistance. The individuals, whose regulatory adaptive status at the exposition to the stress factor decreased by less than 50% formed a group with a moderate level of stress-resistance. The examinees, whose regulatory-adaptive status decreased by more than 50% in a response to the stress factor were set in a group with a low stress-resistance level. The method was tested in the three stress models: 1) exam stress-on 58 students; 2) parachute jump stress-on 35 beginner parachutists; 3) stress, caused by the relocation to the zone of the catastrophe on 30 rescuers. In all the three models the method is highly informative. At the same time the levels of the stress-resistance were being evaluated by the psychological methods. It was shown, that the evaluation of the stress-resistance level via the dynamics of the regulatory-adaptive status allows to objectively characterize the ability of an individual to resist stress and should be included in the test complex for the casting of the candidates for the extreme professions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号