首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   3篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   5篇
  2010年   4篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  1998年   1篇
  1994年   1篇
  1990年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
The sustainability of global crop production is critically dependent on improving tolerance of crop plants to various types of environmental stress. Thus, identification of genes that confer stress tolerance in crops has become a top priority especially in view of expected changes in global climatic patterns. Drought stress is one of the abiotic stresses that can result in dramatic loss of crop productivity. In this work, we show that transgenic expression of a highly conserved cell death suppressor, Bax Inhibitor‐1 from Arabidopsis thaliana (AtBI‐1), can confer increased tolerance of sugarcane plants to long‐term (>20 days) water stress conditions. This robust trait is correlated with an increased tolerance of the transgenic sugarcane plants, especially in the roots, to induction of endoplasmic reticulum (ER) stress by the protein glycosylation inhibitor tunicamycin. Our findings suggest that suppression of ER stress in C4 grasses, which include important crops such as sorghum and maize, can be an effective means of conferring improved tolerance to long‐term water deficit. This result could potentially lead to improved resilience and yield of major crops in the world.  相似文献   
2.
Microsatellites or SSRs (single sequence repeats) have been used to construct and integrate genetic maps in crop species, including Phaseolus vulgaris. In the present study, 3 cDNA libraries generated by the Bean EST project (http://lgm.esalq.usp.br/BEST/), comprising a unigene collection of 3126 sequences and a genomic microsatellite-enriched library, were analyzed for the presence of SSRs. A total of 219 expressed sequence tags (ESTs) were found to carry 240 SSRs (named EST-SSR), whereas 714 genomic sequences contained 471 SSRs (named genomic-SSR). A subset of 80 SSRs, 40 EST-SSRs, and 40 genomic-SSRs were evaluated for molecular polymorphism in 23 genotypes of cultivated beans from the Mesoamerican and Andean genetic pools, including Brazilian cultivars and 2 related species. Of the common bean genotypes, 31 EST-SSR loci were polymorphic, yielding 2-12 alleles as compared with 26 polymorphic genomic-SSRs, accounting for 2-7 alleles. Cluster analysis from data using both genic and genomic-SSR revealed a clear separation between Andean and Mesoamerican beans. The usefulness of these loci for distinguishing bean genotypes and genetic mapping is discussed.  相似文献   
3.
Role of plant stomata in bacterial invasion   总被引:1,自引:0,他引:1  
Stomata are microscopic pores in the epidermis of the aerial parts of terrestrial plants. These pores are essential for photosynthesis, as they allow CO(2) to diffuse into the plant. The size of the stomatal pore changes in response to environmental conditions, such as light intensity, air humidity and CO(2) concentrations, as part of the plant's adaptation to maximize photosynthetic efficiency and, at the same time, to minimize water loss. Historically, stomata have been considered as passive portal of entry for plant pathogenic bacteria. However, recent studies suggest that stomata can play an active role in restricting bacterial invasion as part of the plant innate immune system. Some plant pathogens have evolved specific virulence factors to overcome stomata-based defence. Interestingly, many bacterial disease outbreaks require high humidity, rain, or frost damage, which could promote stomatal opening and/or bypass stomatal defence by creating wounds as alternative entry sites. Further studies on microbial and environmental regulation of stomata-based defence should fill gaps in our understanding of bacterial pathogenesis, disease epidemiology and phyllosphere microbiology.  相似文献   
4.
5.
The aim of the present study was to analyse the morphology of white skeletal muscle in males and females from the GH-transgenic zebrafish (Danio rerio) lineage F0104, comparing the expression of genes related to the somatotrophic axis and myogenesis. Histological analysis demonstrated that transgenic fish presented enhanced muscle hypertrophy when compared to non-transgenic fish, with transgenic females being more hypertrophic than transgenic males. The expression of genes related to muscle growth revealed that transgenic hypertrophy is independent from local induction of insulin-like growth factor 1 gene (igf1). In addition, transgenic males exhibited significant induction of myogenin gene (myog) expression, indicating that myog may mediate hypertrophic growth in zebrafish males overexpressing GH. Induction of the α-actin gene (acta1) in males, independently from transgenesis, also was observed. There were no significant differences in total protein content from the muscle. Our results show that muscle hypertrophy is independent from muscle igf1, and is likely to be a direct effect of excess circulating GH and/or IGF1 in this transgenic zebrafish lineage.  相似文献   
6.
7.
8.
Stomata are natural openings in the plant epidermis responsible for gas exchange between plant interior and environment. They are formed by a pair of guard cells, which are able to close the stomatal pore in response to a number of external factors including light intensity, carbon dioxide concentration, and relative humidity (RH). The stomatal pore is also the main route for pathogen entry into leaves, a crucial step for disease development. Recent studies have unveiled that closure of the pore is effective in minimizing bacterial disease development in Arabidopsis plants; an integral part of plant innate immunity. Previously, we have used epidermal peels to assess stomatal response to live bacteria (Melotto et al. 2006); however maintaining favorable environmental conditions for both plant epidermal peels and bacterial cells has been challenging. Leaf epidermis can be kept alive and healthy with MES buffer (10 mM KCl, 25 mM MES-KOH, pH 6.15) for electrophysiological experiments of guard cells. However, this buffer is not appropriate for obtaining bacterial suspension. On the other hand, bacterial cells can be kept alive in water which is not proper to maintain epidermal peels for long period of times. When an epidermal peel floats on water, the cells in the peel that are exposed to air dry within 4 hours limiting the timing to conduct the experiment. An ideal method for assessing the effect of a particular stimulus on guard cells should present minimal interference to stomatal physiology and to the natural environment of the plant as much as possible. We, therefore, developed a new method to assess stomatal response to live bacteria in which leaf wounding and manipulation is greatly minimized aiming to provide an easily reproducible and reliable stomatal assay. The protocol is based on staining of intact leaf with propidium iodide (PI), incubation of staining leaf with bacterial suspension, and observation of leaves under laser scanning confocal microscope. Finally, this method allows for the observation of the same live leaf sample over extended periods of time using conditions that closely mimic the natural conditions under which plants are attacked by pathogens.  相似文献   
9.
10.
Despite impressive advances in the study of plant resistance to pathogens, little is known about the molecular basis of plant susceptibility to virulent pathogens. Recent progress in susceptible plant-Pseudomonas syringae interactions has provided a glimpse into the battles fought between plants and bacterial pathogens. A key step for pathogenesis appears to be the suppression of host defenses. Suppression of host defenses, including basal defense, gene-for-gene resistance and nonhost resistance, is a key step for pathogenesis. Defense suppression is mediated by bacterial effector proteins, which are secreted through the type III secretion system, and by coronatine, a bacterial toxin that structurally and functionally mimics methyl jasmonate, a plant defense signaling molecule.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号