首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1974篇
  免费   224篇
  2022年   14篇
  2021年   34篇
  2020年   20篇
  2019年   32篇
  2018年   28篇
  2017年   32篇
  2016年   44篇
  2015年   71篇
  2014年   89篇
  2013年   98篇
  2012年   155篇
  2011年   121篇
  2010年   70篇
  2009年   89篇
  2008年   89篇
  2007年   104篇
  2006年   79篇
  2005年   86篇
  2004年   72篇
  2003年   71篇
  2002年   74篇
  2001年   32篇
  2000年   28篇
  1999年   27篇
  1998年   18篇
  1997年   15篇
  1996年   12篇
  1995年   12篇
  1994年   18篇
  1993年   13篇
  1992年   26篇
  1991年   27篇
  1990年   22篇
  1989年   17篇
  1988年   17篇
  1987年   19篇
  1986年   15篇
  1985年   17篇
  1984年   22篇
  1983年   12篇
  1982年   19篇
  1981年   17篇
  1980年   12篇
  1979年   12篇
  1978年   13篇
  1977年   17篇
  1976年   19篇
  1975年   18篇
  1974年   16篇
  1971年   13篇
排序方式: 共有2198条查询结果,搜索用时 15 毫秒
1.
2.
The dominant cecal bacteria in the high-arctic Svalbard reindeer were characterized, their population densities were estimated, and cecal pH was determined in summer, when food quality and availability is good, and in winter, when it is very poor. In summer the total culturable viable bacterial population was (8.9 +/- 5.3) X 10(8) cells ml-1, whereas in winter it was (1.5 +/- 0.7) X 10(8) cells ml-1, representing a decrease to 17% of the summer population density. Of the dominant species of cultured bacteria, Butyrivibrio fibrisolvens represented 23% in summer and 18% in winter. Streptococcus bovis represented 17% in summer and 5% in winter. Bacteroides ruminicola represented 10% in summer and 26% in winter. In summer and winter, respectively, the proportion of the viable population showing the following activities was as follows: fiber digestion, 36 and 48%; cellulolysis, 10 and 6%; xylanolysis, 33 and 48%; and starch utilization, 77 and 71%. The most abundant cellulolytic species in summer was Butyrivibrio fibrisolvens, representing 62% of the total cellulolytic population, and in winter it was Ruminococcus albus, representing 80% of the total cellulolytic population. The most abundant xylanolytic species in summer was Butyrivibrio fibrisolvens, and in winter it was Bacteroides ruminicola, representing 59 and 54% of the xylanolytic isolates in summer and winter, respectively. The cecal bacterial of the Svalbard reindeer have the ability to digest starch and the major structural carbohydrates of the diet that are not digested in the rumen. The cecum in these animals has the potential to contribute very substantially to the digestion of the available plant material in both summer and winter.  相似文献   
3.
Enterochelin synthetase activity is controlled by both repression and feed-back inhibition mechanisms. Inclusion of iron in growth media results in synthesis of all four (D, E, F and G) components of enterochelin synthetase being repressed. The specific inhibition of L-serine activation (partial reaction catalyzed by the F component) by the end products, ferric-enterochelin and 2,3-dihydroxybenzoylserine, is shown to inhibit overall enterochelin synthetase activity.  相似文献   
4.
We previously reported that aged mice lacking complement factor H (CFH) exhibit visual defects and structural changes in the retina. However, it is not known whether this phenotype is age-related or is the consequence of disturbed development. To address this question we investigated the effect of Cfh gene deletion on the retinal phenotype of young and mid-age mice. Cfh −/− mouse eyes exhibited thickening of the retina and reduced nuclear density, but relatively normal scotopic and photopic electroretinograms. At 12 months there was evidence of subtle astroglial activation in the Cfh −/− eyes, and significant elevation of the complement regulator, decay-accelerating factor (DAF) in Müller cells. In the retinal pigment epithelium (RPE) of young control and Cfh −/− animals mitochondria and melanosomes were oriented basally and apically respectively, whereas the apical positioning of melanosomes was significantly perturbed in the mid-age Cfh −/− RPE. We conclude that deletion of Cfh in the mouse leads to defects in the retina that precede any marked loss of visual function, but which become progressively more marked as the animals age. These observations are consistent with a lifelong role for CFH in retinal homeostasis.  相似文献   
5.
6.
7.
8.
The dominant rumen bacteria in high-arctic Svalbard reindeer were characterized, their population densities were estimated, and ruminal pH was determined in summer, when food quality and availability are good, and in winter, when they are poor. In summer the total cultured viable population density was (2.09 +/- 1.26) X 10(10) cells ml-1, whereas in winter it was (0.36 +/- 0.29) X 10(10) cells ml-1, representing a decrease to 17% of the summer population density. On culture, Butyrivibrio fibrisolvens represented 22% of the bacterial population in summer and 30% in winter. Streptococcus bovis represented 17% of the bacterial population in summer but only 4% in winter. Methanogenic bacteria were present at 10(4) cells ml-1 in summer and 10(7) cells ml-1 in winter. In summer and winter, respectively, the proportions of the viable population showing the following activities were as follows: starch utilization, 68 and 63%; fiber digestion, 31 and 74%; cellulolysis, 15 and 35%; xylanolysis, 30 and 58%; proteolysis, 51 and 28%; ureolysis, 40 and 54%; and lactate utilization, 13 and 4%. The principal cellulolytic bacterium was B. fibrisolvens, which represented 66 and 52% of the cellulolytic population in summer and winter, respectively. The results indicate that the microflora of the rumen of Svalbard reindeer is highly effective in fiber digestion and nitrogen metabolism, allowing the animals to survive under the austere nutritional conditions typical of their high-arctic habitat.  相似文献   
9.
Stem cell biology and systems biology are two prominent new approaches to studying cell development. In stem cell biology, the predominant method is experimental manipulation of concrete cells and tissues. Systems biology, in contrast, emphasizes mathematical modeling of cellular systems. For scientists and philosophers interested in development, an important question arises: how should the two approaches relate? This essay proposes an answer, using the model of Waddington’s landscape to triangulate between stem cell and systems approaches. This simple abstract model represents development as an undulating surface of hills and valleys. Originally constructed by C. H. Waddington to visually explicate an integrated theory of genetics, development and evolution, the landscape model can play an updated unificatory role. I examine this model’s structure, representational assumptions, and uses in all three contexts, and argue that explanations of cell development require both mathematical models and concrete experiments. On this view, the two approaches are interdependent, with mathematical models playing a crucial but circumscribed role in explanations of cell development.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号