首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
  2019年   2篇
  2016年   1篇
  2013年   3篇
  2011年   1篇
  2007年   1篇
  2004年   2篇
排序方式: 共有10条查询结果,搜索用时 296 毫秒
1
1.
2.
In the last decade, taxonomic studies have drastically increased the number of species known to inhabit the Arabian deserts. While ongoing phylogenetic studies continue to identify new species and high levels of intraspecific genetic diversity, few studies have yet explored the biogeographic patterns in this arid region using an integrative approach. In the present work, we apply different phylogenetic methods to infer relationships within the Palearctic naked‐toed geckos. We specifically address for the first time the taxonomy and biogeography of Bunopus spatalurus Anderson, 1901, from Arabia using multilocus concatenated and species tree phylogenies, haplotype networks and morphology. We also use species distribution modelling and phylogeographic interpolation to explore the phylogeographic structure of Bunopus spatalurus hajarensis in the Hajar Mountains and the roles of climatic stability and possible biogeographic barriers on lineage occurrence and contact zones in this arid mountain endemism hot spot. According to the inferred topology recovered using concatenated and species tree methods, the genus ‘Bunopus’ is polyphyletic. Bunopus tuberculatus and B. blanfordii form a highly supported clade closely related to Crossobamon orientalis, while the two subspecies of ‘Bunopus’ spatalurus branch together as an independent highly supported clade that diverged during the Miocene according to our estimations. Within B. s. hajarensis, three geographically structured clades can be recognized that according to our estimations diverged during the Late Miocene to Pliocene. The paleodistribution models indicate climatic stability during the Late Pleistocene and the lineage occurrence, and predicted contact zones obtained from phylogeographic interpolation therefore probably result from the older splits of the groups when these lineages originated in allopatry. As demonstrated by the results of the multilocus molecular phylogenetic analyses and the topological test carried out in this study, the genus ‘Bunopus’ is not monophyletic. To resolve this, we resurrect the genus Trachydactylus Haas and Battersby, 1959; for the species formerly referred to as Bunopus spatalurus. Considering the morphological differences, the high level of genetic differentiation in the 12S mitochondrial gene and the results of the phylogenetic and the cmos haplotype network analysis, we elevate Trachydactylus spatalurus hajarensis to the species level Trachydactylus hajarensis (Arnold, 1980).  相似文献   
3.
Carbon and oxygen stable isotope records were compared for Jurassic/Cretaceous (J/K) boundary sections located in the Tethyan Realm (Brodno, Western Slovakia, and Puerto Escaño, Southern Spain; bulk limestones), and the Boreal Realm (Nordvik Peninsula, Northern Siberia, belemnites). Since a detailed biostratigraphic correlation of these Tethyan and Boreal sections is impossible due to different faunal assemblages, correlation of the isotope records was based on paleomagnetic data. This novel approach can improve our understanding of the synchroneity of individual isotope excursions in sections where detailed biostratigraphic correlation is impossible. No significant excursions in either the carbon or oxygen isotope records to be used for future Boreal/Tethyan correlations were found around the J/K boundary (the upper Tithonian and lower Berriasian; magnetozones M20n to M18n) in the studied sections. At the Nordvik section, where a much longer section (middle Oxfordian–basal Boreal Berriasian) was documented, the transition from the middle Oxfordian to the Kimmeridgian and further to the Volgian is characterized by a decrease in belemnite δ18O values (from δ18O values up to + 1.6‰ vs. V-PDB in the Oxfordian to values between + 0.3 and ? 0.8‰ in the late Volgian and earliest Boreal Berriasian). This trend, which has previously been reported from the Russian Platform and Tethyan Realm sections, corresponds either to gradual warming or a decrease in seawater δ18O. Supposing that the oxygen isotope compositions of seawater in the Arctic/Boreal and Tethyan Realms were similar, then the differences between oxygen isotope datasets for these records indicate differences in temperature. The Boreal/Tethyan temperature difference of 7–9 °C in the middle and late Oxfordian decreases towards the J/K boundary, indicating a significant decrease in latitudinal climatic gradients during the Late Jurassic. Two positive carbon isotope excursions recorded for the middle Oxfordian and upper Kimmeridgian in the Nordvik section can be correlated with a similar excursion described earlier for the Russian Platform. Minor influence of biofractionation at the carbon isotopes, and the influence of migration of belemnites to deeper, slightly cooler water at the oxygen isotopes, cannot be excluded for the obtained belemnite data.  相似文献   
4.
5.
6.
Coprological examination of nine bush vipers Atheris chlorechis imported from Ghana revealed the presence of a new coccidian species belonging to Eimeria Schneider, 1875. Thin walled oöcysts of Eimeria atheridisn. sp. are spherical to slightly subspherical, 22.8 (19–26) × 22.5 (19–25) μm, without micropyle, polar granule and oöcyst residuum. Sporocysts are elongately ellipsoidal, 17.1 (15–19) × 7.5 (6–8) μm, with a dome like, relatively flat Stieda body. Sporozoites possess two refractile bodies and distinct transversal striation. Based on the presence of a Stieda body the species described herein clearly belongs to the Eimeria (sensu stricto).  相似文献   
7.
Geckos are one of the most species‐rich, abundant, and widely distributed of all Squamata lineages and present several characteristics that have made them favorite model organisms for biogeographical, ecological, physiological, and evolutionary studies. One of the key aspects of any comparative study is to have a robust, comprehensive phylogeny, and an updated taxonomy. Recently, the Infraorder Gekkota has been the subject of several phylogenetic analyses and taxonomic revisions at different levels. Despite all these phylogenetic and taxonomic advances, there are still some groups whose systematics and taxonomy remain highly problematic. Maybe one of the most poorly resolved groups in spite of decades of intensive research by many herpetologists are the so‐called Palearctic naked‐toed geckos of the family Gekkonidae. This group of nocturnal geckos distributed from Mauritania across North Africa, Arabia, southwestern and central Asia to northern India, western China and southern Mongolia is characterized by the synapomorphy of lack of adhesive subdigital pads. Within the Palearctic naked‐toed geckos, the Saharo‐Arabian clade comprised by the genera Pseudoceramodactylus, Stenodactylus, and Tropiocolotes is the clade with the largest distribution range. At the same time, it is one of the problematic groups, presenting poorly supported phylogenetic relationships, with the genus Tropiocolotes being recovered non‐monophyletic in all analyses despite its morphological uniformity. To reassess the phylogeny of the Palearctic naked‐toed geckos with a special interest in the systematics of Tropiocolotes, we assembled a dataset comprising 298 gecko specimens from 283 different species (including all Tropiocolotes species but one) belonging to 122 of a total of 124 described gecko genera. This dataset included the nuclear c‐mos, ACM4, RAG1, RAG2, and PDC and the mitochondrial ND2 gene. To further investigate the relationships within Tropiocolotes and to revise the systematics of the south Arabian endemic species Tropiocolotes scorteccii, we used an integrative approach including information from the nuclear MC1R and c‐mos, the mitochondrial 12S, 16S, cytb genes, and morphological data from nine of the 10 described Tropiocolotes species. The phylogenetic analyses of the Gekkota dataset recovered a similar topology for the Palearctic naked‐toed geckos to previous studies, but in this case, Tropiocolotes was recovered monophyletic in all analyses, with high support in two of them. The results of the analyses of three datasets specifically assembled to test the effect of both gene sampling and taxon sampling in the monophyly of Tropiocolotes, and the internal relationships of the Palearctic naked‐toed geckos clearly showed that both the number and kind of characters (nuclear or mitochondrial data) and the number of taxa played a fundamental role in recovering the correct phylogenetic relationships. The phylogenetic analyses within Tropiocolotes suggested the existence of high levels of undescribed diversity in the south Arabian T. scorteccii, including a new genetically and morphologically distinct species endemic to Oman (Tropiocolotes confusus sp. nov. ). Our study using a large dataset, including several loci and a dense taxon sampling within Gekkota and especially within Tropiocolotes, has proved a valuable strategy to address the monophyly of Tropiocolotes and the relationships within the Saharo‐Arabian Palearctic naked‐toed geckos. The integrative systematic approach including several samples of south Arabian T. scorteccii based on many years of fieldwork has, once more, uncovered a new species endemic to this region. This highlights the importance of this area of Arabia as a reservoir of reptile endemicity and biodiversity, which is likely linked to the high degree of habitat heterogeneity and the effect of the monsoons. Obviously, based on this and previously published evidence, south Arabia represents an area with still high levels of undiscovered diversity.  相似文献   
8.
9.
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号