首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2016年   1篇
  2015年   2篇
排序方式: 共有10条查询结果,搜索用时 312 毫秒
1
1.
The mechanical property of bone tissue scaffolds is one of the most important aspects in bone tissue engineering that has remained problematic. In our previous study, we fabricated a three‐dimensional scaffold from nano‐hydroxyapatite/gelatin (nHA/Gel) and investigated its efficiency in promoting bone regeneration both in vitro and in vivo. In the present study, the effect of adding silicon carbide (SiC) on the mechanical and biological behaviors of the nHA/Gel/SiC and bone regeneration in vivo were determined. nHA and SiC were synthesized and characterized by the X‐ray diffraction pattern and transmission electron microscope image. Layer solvent casting, freeze drying, and lamination techniques were applied to prepare these scaffolds. Then, the biocompatibility and cell adhesion behavior of the synthesized nHA/Gel/SiC scaffolds were investigated. For in vivo studies, rats were categorized into three groups: blank defect, blank scaffold, and rat bone marrow mesenchymal stem cells (rBM‐MSCs)/scaffold. After 1, 4, and 12 weeks post‐injury, the rats were sacrificed and the calvaria were harvested. Sections with a thickness of 5 µm thickness were prepared and stained with hematoxylin–eosin and Masson's Trichrome, and immunohistochemistry was performed. Our results showed that SiC effectively increased the mechanical properties of the nHA/Gel/SiC scaffold. No significant differences were observed in biocompatibility, cell adhesion, and cytotoxicity of the nHA/Gel/SiC in comparison with the nHA/Gel nanocomposite. Based on histological and immunohistochemical studies, both osteogenesis and collagenization were significantly higher in the rBM‐MSCs/scaffold group, quantitatively and qualitatively. The present study strongly suggests the potential of SiC as an alternative strategy to improve the mechanical and biological properties of bone tissue engineering scaffolds, and shows that the pre‐seeded nHA/Gel/SiC scaffold with rBM‐MSCs improves osteogenesis in the engineered bone implant.  相似文献   
2.

Purpose

In patients with short-term exposure to the sulfur mustard gas, the delayed cellular effects on lungs have not been well understood yet. The lung pathology shows a dominant feature consistent with obliterative bronchiolitis, in which fibroblasts play a central role. This study aims to characterize alterations to lung fibroblasts, at the cellular level, in patients with delayed respiratory complications after short-term exposure to the sulfur mustard gas.

Methods

Fibroblasts were isolated from the transbronchial biopsies of patients with documented history of exposure to single high-dose sulfur mustard during 1985–7 and compared with the fibroblasts of control subjects.

Results

Compared with controls, patients’ fibroblasts were thinner and shorter, and showed a higher population doubling level, migration capacity and number of filopodia. Sulfur mustard decreased the in vitro viability of fibroblasts and increased their sensitivity to induction of apoptosis, but did not change the rate of spontaneous apoptosis. In addition, higher expression of alpha smooth muscle actin showed that the lung''s microenvironment in these patients is permissive for myofibroblastic differentiation.

Conclusions

These findings suggest that in patients under the study, the delayed pulmonary complications of sulfur mustard should be considered as a unique pathology, which might need a specific management by manipulation of cellular components.  相似文献   
3.
4.
This study aimed to identify a novel disease-associated differentially co-expressed mRNA-microRNA (miRNA) that is associated with vasculogenic mimicry (VM) and epithelial-to-mesenchymal transition (EMT) network at different stages of melanoma. By applying weighted gene co-expression network analysis, we constructed a VM+EMT biological network with the available microarray dataset downloaded from a public database. Quantitative real-time PCR, immunohistochemical staining, and CD31-periodic acid solution dual staining were performed to confirm the expression of genes associated with EMT and VM formation in subjects with malignant melanoma (n = 18) and primary melanoma (n = 13) and in healthy subjects (n = 10). Our findings suggested that phosphatidylserine-specific phospholipase A1-alpha (PLA1A) and dermokine (DMKN) genes function as oncogenes that trigger VM and EMT processes during melanomagenesis on interaction with miR-370, miR-563, and miR-770–5p. PLA1A and DMKN genes can be considered potential VM+EMT network-based diagnostic biomarkers for distinguishing between melanoma patients. We postulate that a network with altered PLA1A/miR-563 and DMNK/miR-770–5p/miR-370 may contribute to melanomagenesis by triggering the EMT signaling pathway and VM formation. This study provides a potentially valuable approach for the early diagnosis and prognosis of melanoma progression.  相似文献   
5.
6.
Olfactory ectomesenchymal stem cells (OE-MSCs) possess the immunosuppressive activity and regeneration capacity and hold a lot of promises for neurodegenerative disorders treatment. This study aimed to determine OE-MSCs which are able to augment and differentiate into functional neurons and regenerate the CNS and also examine whether the implantation of OE-MSCs in the pars compacta of the substantia nigra (SNpc) can improve Parkinson's symptoms in a rat model-induced with 6-hydroxydopamine. We isolated OE-MSCs from lamina propria in olfactory mucosa and characterized them using flow cytometry and immunocytochemistry. The therapeutic potential of OE-MSCs was evaluated by the transplantation of isolated cells using a rat model of acute SN injury as a Parkinson's disease. Significant behavioral improvement in Parkinsonian rats was elicited by the OE-MSCs. The results demonstrate that the expression of PAX2, PAX5, PITX3, dopamine transporter, and tyrosine hydroxylase was increased by OE-MSCs compared to the control group which is analyzed with real-time polymerase chain reaction technique and immunohistochemical staining. In the outcome, the transplantation of 1,1′-dioctadecyl-3,3,3′3'-tetramethyl indocarbocyanine perchlorate labeled OE-MSCs that were fully differentiated to dopaminergic neurons contribute to a substantial improvement in patients with Parkinson's. Together, our results provide that using OE-MSCs in neurodegenerative disorders might lead to better neural regeneration.  相似文献   
7.
In this study, we present an electrospun gelatin (EG) scaffold to mimic the extracellular matrix of the testis. The EG scaffold was synthesized by electrospinning and crosslinked with glutaraldehyde vapor to decrease its water solubility and degradation rate. The scanning electron microscope micrographs showed the homogenous morphology of randomly aligned gelatin fibers. The average diameter of gelatin fibers before and after crosslinking was approximately 180 and 220 nm, respectively. Modulus, tensile strength, and elongation at break values were as 161.8 ± 24.4 MPa, 4.21 ± 0.54 MPa, and 7.06 ± 2.12 MPa, respectively. The crosslinked EG showed 75.2% ± 4.5% weight loss after 14 days with no changes in the pH value of degradation solution. Cytobiocompatibility of the EG for sertoli cells and embryonic stem cells (ESCs) was determined in vitro. Sertoli cells were isolated from mouse testis and characterized by immunostaining and flow cytometry. The effects of EG on proliferation and attachment of both sertoli cells and ESCs were examined. The EG scaffolds exhibited no cytotoxicity for sertoli and ESCs. Both sertoli and ESCs were well attached and grown on EG. Coculture of sertoli and ESCs on EG showed better ESCs adhesion compared with ESCs alone. Our findings indicate the potential of EG as a substrate for proliferation, adhesion, and coculture of sertoli and ESCs and may be considered as a promising engineered microenvironment for in vitro coculture system with the aim of guiding stem cells differentiation toward sperm-producing cells.  相似文献   
8.
9.
Mesenchymal stem cells and macrophages (MQ) are two very important cells involved in the normal wound healing process. It is well understood that topological cues and mechanical factors can lead to different responses in stem cells and MQ by influencing their shape, cytoskeleton proliferation, migration, and differentiation, which play an essential role in the success or failure of biomaterial implantation and more importantly wound healing. On the other hand, the polarization of MQ from proinflammatory (M1) to prohealing (M2) phenotypes has a critical role in the acceleration of wound healing. In this study, the morphology of different MQ subtypes (M0, M1, and M2) was imprinted on a silicon surface (polydimethylsiloxane [PDMS]) to prepare a nano-topography cell-imprinted substrate with the ability to induce anti-inflammatory effects on the mouse adipose-derived stem cells (ADSCs) and RAW264.7 monocyte cell line (MO). The gene expression profiles and flow cytometry of MQ revealed that the cell shape microstructure promoted the MQ phenotypes according to the specific shape of each pattern. The ELISA results were in agreement with the gene expression profiles. The ADSCs on the patterned PDMS exhibited remarkably different shapes from no-patterned PDMS. The MOs grown on M2 morphological patterns showed a significant increase in expression and section of anti-inflammatory cytokine compared with M0 and M1 patterns. The ADSCs homing in niches heavily deformed the cytoskeletal, which is probably why the gene expression and phenotype unexpectedly changed. In conclusion, wound dressings with M2 cell morphology-induced surfaces are suggested as excellent anti-inflammatory and antiscarring dressings.  相似文献   
10.
The liver is one of the vital organs in the body, and the gold standard of treatment for liver function impairment is liver transplantation, which poses many challenges. The specific three-dimensional (3D) structure of liver, which significantly impacts the growth and function of its cells, has made biofabrication with the 3D printing of scaffolds suitable for this approach. In this study, to investigate the effect of scaffold geometry on the performance of HepG2 cells, poly-lactic acid (PLA) polymer was used as the input of the fused deposition modeling (FDM) 3D-printing machine. Samples with simple square and bioinspired hexagonal cross-sectional designs were printed. One percent and 2% of gelatin coating were applied to the 3D printed PLA to improve the wettability and surface properties of the scaffold. Scanning electron microscopy pictures were used to analyze the structural properties of PLA–Gel hybrid scaffolds, energy dispersive spectroscopy to investigate the presence of gelatin, water contact angle measurement for wettability, and weight loss for degradation. In vitro tests were performed by culturing HepG2 cells on the scaffold to evaluate the cell adhesion, viability, cytotoxicity, and specific liver functions. Then, high-precision scaffolds were printed and the presence of gelatin was detected. Also, the effect of geometry on cell function was confirmed in viability, adhesion, and functional tests. The albumin and urea production of the Hexagonal PLA scaffold was about 1.22 ± 0.02-fold higher than the square design in 3 days. This study will hopefully advance our understanding of liver tissue engineering toward a promising perspective for liver regeneration.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号