首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2019年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The presence of abnormal hematologic findings such as lymphopenia, thrombocytopenia, and pancytopenia were diagnosed in severe cases of avian influenza A H5N1. Whether direct viral dissemination to bone marrow (BM) cells causes this phenomenon remains elusive. We explore the susceptibility of the two stem cell types; hematopoietic stem cells (HSCs) and mesenchymal stromal cells (MSCs) isolated from human BM cells or cord blood, to infection with avian H5N1 viruses. For the first time, we demonstrated that the H5N1 virus could productively infect and induce cell death in both human stem cell types. In contrast, these activities were not observed upon human influenza virus infection. We also determined whether infection affects the immunomodulatory function of MSCs. We noted a consequent dysregulation of MSC-mediated immune modulation as observed by high cytokine and chemokine production in H5N1 infected MSCs and monocytes cocultures. These findings provide a better understanding of H5N1 pathogenesis in terms of broad tissue tropism and systemic spread.  相似文献   
2.

The multi-wavelength selection and switching system using the hybrid plasmonic add-drop ring resonator (HPARR) for optical communication is proposed for multi-carrier super-channel-based designed. The plasmonic polariton technique applied in the ring resonator mode to the alternate waveguide interferometer switches the multi-wavelength laser emission in the various ranges. The combination of curvature-coupled plasmon ring and substances with different refractive index allows switching the multi-wavelength emission to shorter the free spectrum range (FSR) and specific wavelengths, without an applied pump signal or adjusted the ring size. It is suitable for the super-channel of wavelength division multiplex (WDM) in the future optical network.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号