首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   5篇
  40篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   5篇
  2003年   6篇
  2002年   3篇
  1997年   1篇
  1996年   1篇
  1986年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
2.
In plants, the mechanism by which RNA can induce de novo cytosine methylation of homologous DNA is poorly understood. Cytosines in all sequence contexts become modified in response to RNA signals. Recent work has implicated the de novo DNA methyltransferases (DMTases), DRM1 and DRM2, in establishing RNA-directed methylation of the constitutive nopaline synthase promoter, as well as the DMTase MET1 and the putative histone deacetylase HDA6 in maintaining or enhancing CpG methylation induced by RNA. Despite the identification of enzymes that catalyze epigenetic modifications in response to RNA signals, it is unclear how RNA targets DNA for methylation. A screen for mutants defective in RNA-directed DNA methylation identified a novel putative chromatin-remodeling protein, DRD1. This protein belongs to a previously undefined, plant-specific subfamily of SWI2/SNF2-like proteins most similar to the RAD54/ATRX subfamily. In drd1 mutants, RNA-induced non-CpG methylation is almost eliminated at a target promoter, resulting in reactivation, whereas methylation of centromeric and rDNA repeats is unaffected. Thus, unlike the SNF2-like proteins DDM1/Lsh1 and ATRX, which regulate methylation of repetitive sequences, DRD1 is not a global regulator of cytosine methylation. DRD1 is the first SNF2-like protein implicated in an RNA-guided, epigenetic modification of the genome.  相似文献   
3.
4.
A SNF2-like protein facilitates dynamic control of DNA methylation   总被引:7,自引:0,他引:7  
DRD1 is a SNF2-like protein previously identified in a screen for mutants defective in RNA-directed DNA methylation of a seed promoter in Arabidopsis. Although the initial study established a role for DRD1 in RNA-directed DNA methylation, it did not address whether DRD1 is needed for de novo or maintenance methylation, or whether it is required for methylation of other target sequences. We show here that DRD1 is essential for RNA-directed de novo methylation and acts on different target promoters. In addition, an unanticipated role for DRD1 in erasure of CG methylation was shown when investigating maintenance methylation after segregating away the silencing trigger. DRD1 is unique among known SNF2-like proteins in facilitating not only de novo methylation of target sequences in response to RNA signals, but also loss of methylation when the silencing inducer is withdrawn. The opposing roles of DRD1 could contribute to the dynamic regulation of DNA methylation.  相似文献   
5.
6.
In plants, heterochromatin is maintained by a small RNA-based gene silencing mechanism known as RNA-directed DNA methylation (RdDM). RdDM requires the non-redundant functions of two plant-specific DNA-dependent RNA polymerases (RNAP), RNAP IV and RNAP V. RNAP IV plays a major role in siRNA biogenesis, while RNAP V may recruit DNA methylation machinery to target endogenous loci for silencing. Although small RNA-generating regions that are dependent on both RNAP IV and RNAP V have been identified previously, the genomic loci targeted by RNAP V for siRNA accumulation and silencing have not been described extensively. To characterize the RNAP V-dependent, heterochromatic siRNA-generating regions in the Arabidopsis genome, we deeply sequenced the small RNA populations of wild-type and RNAP V null mutant (nrpe1) plants. Our results showed that RNAP V-dependent siRNA-generating loci are associated predominately with short repetitive sequences in intergenic regions. Suppression of small RNA production from short repetitive sequences was also prominent in RdDM mutants including dms4, drd1, dms3 and rdm1, reflecting the known association of these RdDM effectors with RNAP V. The genomic regions targeted by RNAP V were small, with an estimated average length of 238 bp. Our results suggest that RNAP V affects siRNA production from genomic loci with features dissimilar to known RNAP IV-dependent loci. RNAP V, along with RNAP IV and DRM1/2, may target and silence a set of small, intergenic transposable elements located in dispersed genomic regions for silencing. Silencing at these loci may be actively reinforced by RdDM.  相似文献   
7.
8.
9.
10.

Background  

Endogenous pararetroviral sequences (EPRVs) are a recently discovered class of repetitive sequences that is broadly distributed in the plant kingdom. The potential contribution of EPRVs to plant pathogenicity or, conversely, to virus resistance is just beginning to be explored. Some members of the family Solanaceae are particularly rich in EPRVs. In previous work, EPRVs have been characterized molecularly in various species of Nicotiana including N.tabacum (tobacco) and Solanum tuberosum (potato). Here we describe a family of EPRVs in cultivated tomato (Solanum lycopersicum L.) and a wild relative (S.habrochaites).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号