首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   19篇
  329篇
  2024年   1篇
  2023年   2篇
  2022年   8篇
  2021年   19篇
  2020年   5篇
  2019年   10篇
  2018年   20篇
  2017年   12篇
  2016年   16篇
  2015年   22篇
  2014年   13篇
  2013年   21篇
  2012年   39篇
  2011年   17篇
  2010年   15篇
  2009年   10篇
  2008年   11篇
  2007年   15篇
  2006年   11篇
  2005年   11篇
  2004年   13篇
  2003年   9篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1999年   6篇
  1998年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
排序方式: 共有329条查询结果,搜索用时 15 毫秒
1.
The influence of opioid peptides (gamma- and beta-endorphins, leu- and met-enkephalins, as well as certain synthetic analogs of enkephalin) was investigated on organotypic cultures of rat spinal and sympathetic ganglia. The cellular composition and size of the zone of growth were evaluated on the basis of intravital observations and an analysis of the specimen obtained using the method of impregnation, according to Holmes and the detection of catecholamines with glyoxylic acid. It was established that under the action of all the investigated substances that possess high affinity for opiate receptors, growth of the neurites from an explant was enhanced, and the number of glial and fibroblastoid cells in the growth zone was increased. The effect was observed most distinctly on a model of sympathetic ganglia. The tested compounds exhibited a significant growth-stimulating effect in the range of concentrations 10–8–10–14 M. The maximum size of the growth zone of the explants of the sympathetic ganglia in the case of a mean effective concentration of the peptides 10–10 M by the third to fifth day of culturing was approximately 2–2.5 times this value in the control. The reaction was similar to the response of the nerve cells to nerve growth factor, used as a standard. Thus, the opioid peptides exhibit a pronounced growth effect on the structures of the nerve tissue under conditions of culture. It is suggested that this group of compounds, together with its currently well-known functions, may play a definite role in processes of the development and regenera-of nerve tissue.Institute of Experimental Cardiology, All-Union Cardiologic Science Center, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 4, pp. 550–557, July–August, 1985.  相似文献   
2.
The modifying effect of adding serotonin to the intra- and extracellular environment on the inward currents generated by the cell following intracellular application of acetylcholine was shown during studies on unidentified isolatedLimnaea stagnalis neurons using techniques of intracellular perfusion and voltage clamping. Serotonin inhibited response to achetylcholine in both cases in most of the test neurons. Serotonin intensified this response when applied to the intracellular environment and produced the opposite effect of reducing the amplitude of inward acetylcholine currents when administered extracellularly. Cyproheptadine, the serotonin receptor blocker, inhibited the enhancing effect of serotonin produced by adding this neurotransmitter to the intracellular fluid, but mimicked the inhibitory effects of serotonin on response to acetylcholine, whether added to the intra- or extracellular environment. Findings would suggest the presence of intracellular serotonin receptors in the mollusk neurons; one of their possible functions could be controlling the sensitivity of the cell surface cholinoreceptors.N. K. Koltsov Institute of Developmental Biology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 326–332, May–June, 1986.  相似文献   
3.
4.
5.
Microbiology - This research analyses the structure and functions of bacterial communities of regressive spots in ombrotrophic bogs. Algal biomass was found to predominate in the biomass structure...  相似文献   
6.
The hydrophobic surfactant proteins, SP-B and SP-C, greatly accelerate the adsorption of the surfactant lipids to an air/water interface. Previous studies of factors that affect curvature suggest that vesicles may adsorb via a rate-limiting structure with prominent negative curvature, in which the hydrophilic face of the lipid leaflets is concave. To determine if SP-B and SP-C might promote adsorption by inducing negative curvature, we used small-angle x-ray scattering to test whether the physiological mixture of the two proteins affects the radius of cylindrical monolayers in the inverse hexagonal phase. With dioleoyl phosphatidylethanolamine alone, the proteins had no effect on the hexagonal lattice constant, suggesting that the proteins fail to insert into the cylindrical monolayers. The surfactant lipids also contain ∼10% anionic phospholipids, which might allow incorporation of the cationic proteins. With 10% of the anionic dioleoyl phosphatidylglycerol added to dioleoyl phosphatidylethanolamine, the proteins induced a dose-related decrease in the hexagonal lattice constant. At 30°C, the reduction reached a maximum of 8% relative to the lipids alone at ∼1% (w/w) protein. Variation of NaCl concentration tested whether the effect of the protein represented a strictly electrostatic effect that screening by electrolyte would eliminate. With concentrations up to 3 M NaCl, the dose-related change in the hexagonal lattice constant decreased but persisted. Measurements at different hydrations determined the location of the pivotal plane and proved that the change in the lattice constant produced by the proteins resulted from a shift in spontaneous curvature. These results provide the most direct evidence yet that the surfactant proteins can induce negative curvature in lipid leaflets. This finding supports the model in which the proteins promote adsorption by facilitating the formation of a negatively curved, rate-limiting structure.  相似文献   
7.
Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector–effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector–effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, to query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila‐translocated substrates. While capturing all known examples of effector–effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct—a hallmark of an emerging class of proteins called metaeffectors, or “effectors of effectors”. Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Metaeffectors, along with other, indirect, forms of effector–effector modulation, may be a common feature of many intracellular pathogens—with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell.  相似文献   
8.
Induction of an axenic filamentous‐like callus growth from the brown algae Fucus vesiculosus is described. Different treatments were investigated in various combinations to develop axenic cultures based on identification of surface symbionts via 18S ribosomal RNA. Moreover, viability was confirmed after such processes by 2,3,5‐triphenyl tetrazolium chloride assay that demonstrated an average viability of 29%, relative to nonsterilized explants. After six weeks of a phototrophic cultivation on artificial sea water‐12‐nitrilotriacetic acid (0.5% w/v agar), a filamentous‐like callus growth was observed, which was identified genetically through its mitochondrial DNA after subculturing. Achievement of confirmed marine callus cultures might enrich old previously established blue biotechnology techniques and open new chances for cultivation of brown algae for production of good manufacturing practice‐compliant bioproducts.  相似文献   
9.
10.
It is a well‐known fact, that there is a close interconnection between vascular and neural structures in both embryonic development and postnatal life. Different models have been employed to dissect the mechanisms of these interactions, ranging from in vitro systems (e.g., co‐culture of neural and endothelial cells) to in vivo imaging of central neural system recovery in laboratory animals after artificially induced trauma. Nevertheless, most of these models have serious limitations. Here, we describe an ex vivo model, representing an organotypic co‐culture of aortic fragments (AF) with longitudinal slices of mouse neonatal spinal cord (SC) or dorsal root ganglia (DRG). The samples were co‐cultured in a medium adapted for SC tissue and lacking any pro‐angiogenic or neurotrophic growth factors. It was found, that cultivation of AFs in the SC injury zone (transversal dissection of a SC slice) resulted in the initiation of active aortic sprouting. Remarkably, the endothelial cells exiting the AFs never invaded the SC tissue, concentrating in a nearby area (negative taxis). In contrast, the DRGs, while also promoting the sprouting, were a target of active endothelial CD31+ cell invasion (positive taxis). Thus, the tissues of both central and peripheral nervous systems have a prominent positive effect on aortic sprouting, while the vector of endothelial cell expansion is strictly nervous‐tissue‐type dependent. The ex vivo AF co‐culture with SC or DRG appeared to be a useful and promising model for a further endeavor into the mechanisms driving the complex interactions between neural and endothelial tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号