首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   1篇
  2023年   1篇
  2021年   3篇
  2019年   1篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   11篇
  2011年   8篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   9篇
  2006年   10篇
  2005年   4篇
  2004年   10篇
  2003年   2篇
  2002年   5篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1977年   1篇
排序方式: 共有91条查询结果,搜索用时 31 毫秒
1.
Pycnogenol® (PYC), a patented combination of bioflavonoids extracted from the bark of French maritime pine (Pinus maritima), scavenges free radicals and promotes cellular health. The protective capacity of PYC against ethanol toxicity of neurons has not previously been explored. The present study demonstrates that in postnatal day 9 (P9) rat cerebellar granule cells the antioxidants vitamin E (VE) and PYC (1) dose dependently block cell death following 400, 800, and 1600 mg/dL ethanol exposure (2) inhibit the ethanol‐induced activation of caspase‐3 in the same model system; and (3) reduce neuronal membrane disruption as assayed by phosphatidylserine translocation to the cell surface. These results suggest that both PYC and VE have the potential to act as therapeutic agents, antagonizing the induction of neuronal cell death by ethanol exposure. © 2004 Wiley Periodicals, Inc. J Neurobiol 59: 261–271, 2004  相似文献   
2.
3.
We reported previously that treatment of rats with the hepatocarcinogen N-nitrosomorpholine (NNM) caused severe hepatotoxicity associated with apoptosis of hepatocytes beginning 12 h after administration of NNM. We observed that poly(ADP-ribose) polymerase 1 (PARP-1), one of the major nuclear targets for caspases, was proteolytically degraded generating primarily 64 and 54 kDa fragments. Interestingly, at 20, 30, and 40 h post-treatment a 85 kDa cleavage product of PARP-1 resembling that generated by caspase-3 appeared additionally in hepatocytes. More detailed analysis performed in the present study revealed that the 85 kDa fragment of PARP-1 was generated in the liver in 10 of 17 (60%) animals examined between 20 and 40 h after NNM administration. The caspase-3 generated 85 kDa fragment was detected solely in hepatocytes undergoing apoptosis as evidenced by immunostaining performed with the antibody recognizing exclusively PARP-1 cleaved at position 214/215. The appearance of the 85 kDa fragment of PARP-1 in the liver nuclei coincided temporally with an significant increase of caspase-3 activity in hepatocytes. In contrast, in testis samples obtained from the same animals, no changes characteristic for apoptosis such as induction of caspases activity or degradation of nuclear PARP-1 could be detected. Our results evidence unequivocally that PARP-1 in liver is not resistant to caspases and can be processed in vivo by activated caspase-3 producing the p85 kDa fragment. Moreover, the caspase-3 induced PARP-1 fragmentation coinciding with the increase of caspase-3 activity was detected solely in the target organ and exclusively in hepatocytes undergoing apoptosis. Considering the fact that the caspase-3 mediated PARP-1 cleavage occurred only in 60% of animals tested between 20 and 40 h, it becomes obvious that the cellular response in vivo to the same trigger(s) strongly varies and may depend on a variety of intrinsic factors. It remains to elucidate which additional factors may be involved in the modulation of cellular response to the strong insults thereby activating different pathways and generating distinct outcomes.  相似文献   
4.
The sensitivity of the developing central nervous system (CNS) to the deleterious effects of ethanol has been well documented, with exposure leading to a wide array of CNS abnormalities. Certain CNS regions are susceptible to ethanol during well-defined critical periods. In the neonatal rodent cerebellum, a profound loss of Purkinje cells is found when ethanol is administered early in the postnatal period [on postnatal days 4 or 5 (P4-5)], while this neuronal population is much less vulnerable to similar ethanol insult slightly later in the postnatal period (P7-9). Prior studies have shown that neurotrophic factors (NTFs) can be altered by ethanol exposure, and both in vitro and in vivo studies have provided evidence that such substances have the potential to protect against ethanol neurotoxicity. In the present study, it was hypothesized that depletion of an NTF shown to be important to cerebellar development would exacerbate ethanol-related effects within this region, when administration was confined to a normally ethanol-resistant ontogenetic period. For this study, brain-derived neurotrophic factor (BDNF) gene-deleted ("knockout") and wild-type mice were exposed to ethanol via vapor inhalation or to control conditions during the normally ethanol-resistant period (P7 and P8). Two hours after termination of exposure on P8, analyses were made of body weight, crown-rump length, and brain weight. In subsequent investigations, the number and density of Purkinje cells and the volume of cerebellar lobule I were determined, and the expression of anti- and pro-apoptotic proteins and the activities of endogenous antioxidants were assessed. It was found that the BDNF knockouts were significantly smaller than the wild-type animals, with smaller brain weights. Purkinje cell number and density was reduced in ethanol-treated knockout, but not wild-type animals, and the volume of lobule I was significantly decreased in the gene-deleted animals compared to wild-types, but was not further affected by ethanol treatment. The loss of Purkinje cells in the BDNF knockouts was accompanied by decreases in anti-apoptotic Bcl-xl and in phosphorylated (and hence inactivated) pro-apoptotic Bad, and reduced activity of the antioxidant glutathione reductase, while the antioxidant catalase was increased by ethanol treatment in this genotype. In the wild-type animals, anti-apoptotic Bcl-2 was decreased by ethanol treatment, but the pro-apoptotic c-Jun N-terminal kinase (JNK) was markedly diminished by ethanol exposure, while the activity of the protective antioxidant superoxide dismutase (SOD) was significantly enhanced. These results suggest that neurotrophic factors have the capacity to protect against ethanol neurotoxicity, perhaps by regulation of expression of molecules critical to neuronal survival such as elements of the apoptosis cascade and protective antioxidants.  相似文献   
5.
We searched for molecules that selectively inactivate homodimeric triosephosphate isomerase from Trypanosoma cruzi (TcTIM), the parasite that causes Chagas' disease. We found that some benzothiazoles inactivate the enzyme. The most potent were 3-(2-benzothiazolylthio)-propanesulfonic acid, 2-(p-aminophenyl)-6-methylbenzothiazole-7-sulfonic acid, and 2-(2-4(4-aminophenyl)benzothiazole-6-methylbenzothiazole-7-sulfonic acid. Half-maximal inactivation by these compounds was attained with 33, 56, and 8 microM, respectively; in human TIM, half-maximal inactivation required 422 microM, 3.3 mM, and 1.6 mM. In TcTIM, the effect of the benzothiazoles decreased as the concentration of the enzyme was increased. TcTIM has a cysteine (Cys 15) at the dimer interface, whereas human TIM has methionine in that position. In M15C human TIM, the benzothiazole concentrations that caused half-maximal inactivation were much lower than in the wild type. The overall findings suggest that the benzothiazoles perturb the interactions between the two subunits of TcTIM through a process in which the interface cysteine is central in their deleterious action.  相似文献   
6.
Fifteen patients with refractory Hodgkin's disease were treated in a dose-escalation trial with the bispecific monoclonal antibody (bi-mAb) HRS-3/A9, which is directed against the Fcγ receptor III (CD16 antigen) and the Hodgkin's-associated CD30 antigen. Treatment consisted of four cycles of four bi-mAb infusions given over 1 h every 3–4 days at different dose levels ranging from 1 mg/m2 to 64 mg/m2. Measurable serum levels (above 0.1 μg/ml) of circulating bi-mAb could be detected in patients treated with doses above 4 mg/m2, reaching peak levels of 9.5 μg/ml immediately after the end of antibody infusion on the highest dose level. Bi-mAb elimination corresponded to second-order kinetics with a terminal half-life time (t 1/2,β) of 28–32 h. Bi-mAb treatment induced the occurrence of human anti-(mouse Ig) antibodies (HAMA) in 6 out of 13 patients initially testing negative. All 6 patients not only developed anti-isotypic anti-(mouse Ig) but also anti-idiotypic and anti-anti-idiotypic antibodies. While no consistent changes of peripheral blood cell counts, or of any lymphocyte subpopulation including natural killer (NK) cells, has been observed, 4 out of 6 evaluable patients treated with doses of at least 4 mg/m2 showed an increase of NK cell activity within 2 weeks after treatment, which lasted for a maximum of 12 weeks. Circulating amounts of soluble CD30 antigen could be detected in the serum of 6 patients. However, like the results and time courses of all the other immunological parameters evaluated, this was not predictive for treatment outcome. Received: 16 September 1999 / Accepted: 6 January 2000  相似文献   
7.
Inhibition of cyclin-dependent kinases (CDKs) is a novel strategy in the therapy of human malignancies. The pharmacological CDK inhibitors representing a few distinct classes of compounds exert different target specificity. Considering the fact that dividing and quiescent cells differ in their CDK activity and in the pattern of their expression, one might expect that anti-proliferative efficiency of the pharmacological CDK inhibitors would depend on the mitotic index of treated cells. The present article shows that olomoucine (OLO), a weak CDK2 inhibitor has new, unexpected activity. At concentrations up to 100 microM OLO did not inhibit proliferation of normal human cells, but arrested growth of human HL-60 leukemia cells. The anti-proliferative effect of OLO was clearly weaker than that of roscovitine (ROSC). Surprisingly, OLO at low doses strongly up-regulated a cellular protein with approximately 65 kDa in normal, but not in immortalized and cancer cells. By mass spectrometric analysis CLIMP-63, a cytoskeleton-linking membrane protein was identified as the major component of the up-regulated protein band. These results were subsequently confirmed by immunoblotting. Further experiments revealed that OLO, but not ROSC, strongly up-regulates CLIMP-63 in a dose- and time-dependent manner solely in senescent cells.  相似文献   
8.
We reported recently that roscovitine (ROSC), a selective cyclin-dependent kinase (CDK) inhibitor, arrested human MCF-7 breast cancer cells in G2 phase of the cell cycle and concomitantly induced apoptosis. On the other hand, ROSC-induced G1 arrest observed by another group has not been accompanied by apoptosis. Therefore, we decided to prove to which extent components of tissue culture media could affect the primary action of ROSC. For this purpose we compared the efficacy of the ROSC treatment on MCF-7 cells cultivated in medium with and without phenol red. The kinetics of MCF-7 cell proliferation strongly depended on the presence of phenol red that has been recognized previously as a weak estrogen. Exposure of MCF-7 cells cultivated in phenol red-deprived medium to ROSC resulted in a strong G2 arrest and apoptosis. However, the anti-proliferative and pro-apoptotic action of ROSC was strongly diminished in cells maintained in medium containing phenol red. The ratio of the G2 cell population after 12 h ROSC was reduced by approximately 20% in the latter and correlated with the lack of CDK2 inactivation. Moreover, the kinetics of ROSC-induced apoptosis was delayed in the presence of phenol red. These results clearly evidence that the efficacy of the therapy of ER-positive breast cancers by CDK inhibitors is diminished in the presence of estrogen-mimicking compounds and indicate that phytoestrogens and xenoestrogens could interfere with the therapy. Therefore, the exposure of cancer patients to the estrogen mimics should be avoided at least during chemotherapy by CDK inhibitors.  相似文献   
9.
Hematopoietic reconstitution, following bone marrow or stem cell transplantation, requires a microenvironment niche capable of supporting both immature progenitors and stem cells with the capacity to differentiate and expand. Osteoblasts comprise one important component of this niche. We determined that treatment of human primary osteoblasts (HOB) with melphalan or VP-16 resulted in increased phospho-Smad2, consistent with increased TGF-β1 activity. This increase was coincident with reduced HOB capacity to support immature B lineage cell chemotaxis and adherence. The supportive deficit was not limited to committed progenitor cells, as human embryonic stem cells (hESC) or human CD34+ bone marrow cells co-cultured with HOB pre-exposed to melphalan, VP-16 or rTGF-β1 had profiles distinct from the same populations co-cultured with untreated HOB. Functional support deficits were downstream of changes in HOB gene expression profiles following chemotherapy exposure. Melphalan and VP-16 induced damage of HOB suggests vulnerability of this critical niche to therapeutic agents frequently utilized in pre-transplant regimens and suggests that dose escalated chemotherapy may contribute to post-transplantation hematopoietic deficits by damaging structural components of this supportive niche.  相似文献   
10.
Amanita curtipes and A. ponderosa are two Mediterranean taxa sharing a number of morphological features as well as their habitat. Their synonymy or variety status has been proposed by several authors. To clarify this taxonomic issue we have sequenced the D1-D2 domains of the 28S rRNA gene as well as the complete ITS1-5.8S-ITS2 region of several specimens of the two species collected in Spain, and aligned these sequences with those from other Amanita species. Molecular phylogenetic analysis based on the two regions revealed that A. ponderosa and A. curtipes are clearly distinct species. The distribution of Amanita species in the phylogenetic trees was consistent with the division of the genus in subgenera and sections as proposed by previous authors. Sequences of A. ponderosa and A. curtipes were grouped in a monophyletic cluster together with other species of the section Amidella. However, A. ponderosa was closer to other species in the section, such as A. peckiana and A. volvata, than to A. curtipes. We also indicate the macromorphological characters that are most useful to reliably distinguish A. ponderosa and A. curtipes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号