首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2018年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2011年   1篇
  2009年   2篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2000年   2篇
  1999年   2篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
2.
To evaluate the efficacy and outcomes of tectonic epikeratoplasty with use of ethanol-preserved corneal grafts for the management of perforated corneal melts. The present retrospective case series includes 10 eyes which underwent tectonic epikeratoplasty for perforated corneal melts. The stromal remainders of Descemet membrane endothelial keratoplasty (DMEK) and Descemet stripping automated endothelial keratoplasty (DSAEK) graft preparation were stored in 95% ethanol and used as emergency tectonic grafts for restoring globe integrity after sterile and infectious perforated corneal melts. In 6 cases with subtotal corneal melt, DMEK remainders (endothelium-denuded corneoscleral buttons) were used for ‘limbus to limbus’ tectonic epikeratoplasty and in 4 cases DSAEK remainders (anterior stroma) were used to seal focal perforated melts. Graft storage time was 5.1?±?4.9 (ranging from 0.5 to 17) months. The surgeries were successful in all cases with restitution of the globe integrity. During the postoperative course 4 cases developed a graft melt (corneoscleral button for limbus to limbus tectonic epikeratoplasty, n?=?3; lamellar patch, n?=?1) within 2–6 months after the initial procedure. Three patients underwent successful repeat tectonic epikeratoplasty. In the fourth case of graft melt the globe was enucleated due to underlying expulsive haemorrhage and severe pain. The short-term results of the present case series suggest that the use of ethanol-stored stromal remainder of donor corneas after endothelial keratoplasty is an efficient temporary measure for tectonic restoration of perforated corneas.  相似文献   
3.
4.
Genetic variation in the major histocompatibility complex (MHC) affects CD4∶CD8 lineage commitment and MHC expression. However, the contribution of specific genes in this gene-dense region has not yet been resolved. Nor has it been established whether the same genes regulate MHC expression and T cell selection. Here, we assessed the impact of natural genetic variation on MHC expression and CD4∶CD8 lineage commitment using two genetic models in the rat. First, we mapped Quantitative Trait Loci (QTLs) associated with variation in MHC class I and II protein expression and the CD4∶CD8 T cell ratio in outbred Heterogeneous Stock rats. We identified 10 QTLs across the genome and found that QTLs for the individual traits colocalized within a region spanning the MHC. To identify the genes underlying these overlapping QTLs, we generated a large panel of MHC-recombinant congenic strains, and refined the QTLs to two adjacent intervals of ∼0.25 Mb in the MHC-I and II regions, respectively. An interaction between these intervals affected MHC class I expression as well as negative selection and lineage commitment of CD8 single-positive (SP) thymocytes. We mapped this effect to the transporter associated with antigen processing 2 (Tap2) in the MHC-II region and the classical MHC class I gene(s) (RT1-A) in the MHC-I region. This interaction was revealed by a recombination between RT1-A and Tap2, which occurred in 0.2% of the rats. Variants of Tap2 have previously been shown to influence the antigenicity of MHC class I molecules by altering the MHC class I ligandome. Our results show that a restricted peptide repertoire on MHC class I molecules leads to reduced negative selection of CD8SP cells. To our knowledge, this is the first study showing how a recombination between natural alleles of genes in the MHC influences lineage commitment of T cells.  相似文献   
5.
BACKGROUND: We investigated the effects of insulin on glucose transport in human monocytes using flow cytometry, a method with several advantages over previously used techniques. We hypothesized that monocytes could be used as tools to study insulin action at the cellular level and facilitate the investigation of mechanisms that lead to insulin resistance. METHODS: Blood was withdrawn from 38 healthy subjects. The expression of glucose transporter (GLUT) isoforms in plasma membrane and the rates of glucose transport were determined with and without insulin (10 to 1,000 mU/L). Anti-CD14 phycoerythrin monoclonal antibody was used for monocyte gating. GLUT isoforms were determined after staining cells with specific antisera to GLUT1, GLUT3, and GLUT4. Glucose transport was monitored with 6-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-6-deoxyglucose (NBDG). RESULTS: Insulin increased the uptake of NBDG (median effective dose 20 mU/L) and the expression of GLUT3 and GLUT4 isoforms in the plasma membrane (median effective doses 20 and 35 mU/L, respectively) but had no effect on GLUT1. Maximal effects were always reached at 100 mU/L of insulin. CONCLUSIONS: Monocytes may be a valid model system to study the effects of insulin on glucose transport. Further, flow cytometry is suitable for this investigation and can be used as an alternative to radiotracer methods.  相似文献   
6.
Epigenetic marks such as cytosine methylation are important determinants of cellular and whole-body phenotypes. However, the extent of, and reasons for inter-individual differences in cytosine methylation, and their association with phenotypic variation are poorly characterised. Here we present the first genome-wide study of cytosine methylation at single-nucleotide resolution in an animal model of human disease. We used whole-genome bisulfite sequencing in the spontaneously hypertensive rat (SHR), a model of cardiovascular disease, and the Brown Norway (BN) control strain, to define the genetic architecture of cytosine methylation in the mammalian heart and to test for association between methylation and pathophysiological phenotypes. Analysis of 10.6 million CpG dinucleotides identified 77,088 CpGs that were differentially methylated between the strains. In F1 hybrids we found 38,152 CpGs showing allele-specific methylation and 145 regions with parent-of-origin effects on methylation. Cis-linkage explained almost 60% of inter-strain variation in methylation at a subset of loci tested for linkage in a panel of recombinant inbred (RI) strains. Methylation analysis in isolated cardiomyocytes showed that in the majority of cases methylation differences in cardiomyocytes and non-cardiomyocytes were strain-dependent, confirming a strong genetic component for cytosine methylation. We observed preferential nucleotide usage associated with increased and decreased methylation that is remarkably conserved across species, suggesting a common mechanism for germline control of inter-individual variation in CpG methylation. In the RI strain panel, we found significant correlation of CpG methylation and levels of serum chromogranin B (CgB), a proposed biomarker of heart failure, which is evidence for a link between germline DNA sequence variation, CpG methylation differences and pathophysiological phenotypes in the SHR strain. Together, these results will stimulate further investigation of the molecular basis of locally regulated variation in CpG methylation and provide a starting point for understanding the relationship between the genetic control of CpG methylation and disease phenotypes.  相似文献   
7.
8.
BACKGROUND: In hyperthyroidism, tissue glucose disposal is increased to adapt to high energy demand. Our aim was to examine the glucose transporter isoforms involved in this process and their regulation through insulin in monocytes from subjects with hyperthyroidism. METHODS: Blood (20 ml) was withdrawn from 12 healthy and 12 hyperthyroid subjects. The abundance of glucose transporter isoforms (GLUT) on the monocyte surface membrane was determined in the absence and presence of insulin (10-100 mU/l) using flow cytometry. Anti-CD14-PE monoclonal antibody was used for monocyte gating. GLUT isoforms were determined after staining the cells with specific antisera to GLUT1, GLUT3 and GLUT4. RESULTS: Hyperthyroidism increased basal monocyte-surface GLUT1, GLUT3 and GLUT4 transporters. In these cells, insulin had a marginal effect on GLUT4 translocation (25 %, p < 0.02) and a more significant effect on GLUT3 translocation (45 %, p < 0.001) on plasma membrane. CONCLUSIONS: In the hyperthyroid state, (1) basal abundance of GLUT1, GLUT3 and GLUT4 transporters on the cell surface is increased; (2) insulin mainly increases the recruitment of GLUT3 and, to a lesser extent, GLUT4 glucose transporters on the plasma membrane. These findings may provide a mechanism to explain the increment of glucose disposal in peripheral tissues in hyperthyroidism.  相似文献   
9.
Solid-phase microextraction (SPME) is under investigation for its usefulness in the determination of a widening variety of volatile and semivolatile analytes in biological fluids and materials. Semivolatiles are increasingly under study as analytical targets, and difficulties with small partition coefficients and long equilibration times have been identified. Amphetamines were selected as semivolatiles exhibiting these limitations and methods to optimize their determination were investigated. A 100- micro m polydimethylsiloxane (PDMS)-coated SPME fiber was used for the extraction of the amphetamines from human urine. Amphetamine determination was made using gas chromatography (GC) with flame-ionization detection (FID). Temperature, time and salt saturation were optimized to obtain consistent extraction. A simple procedure for the analysis of amphetamine (AMP) and methamphetamine (MA) in urine was developed and another for 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxy-N-methamphetamine (MDMA) and 3,4-methylenedioxy-N-ethylamphetamine (MDEA) using headspace solid-phase microextraction (HS-SPME) and GC-FID. Higher recoveries were obtained for amphetamine (19.5-47%) and methamphetamine (20-38.1%) than MDA (5.1-6.6%), MDMA (7-9.6%) and MDEA (5.4-9.6%).  相似文献   
10.
We present a novel method, based on the hybridization of allele-specific oligonucleotide probes, that allows the specific detection of chromosome 21 α-satellite sequences. Absence of informative polymorphic markers from the centromeric region of chromosome 21 has constituted one of the difficulties in studying the centromere of this chromosome. The α-satellite subfamilies from chromosomes 21 and 13 are almost identical in sequence and thus cannot be distinguished using conventional hybridization techniques. Analysis using nuclear families showed that the centromeric polymorphism, detected using our specific probe and pulsed-field gel restriction analysis, segregates in a Mendelian fashion and exhibits a high degree of polymorphism among unrelated individuals. The alphoid DNA of chromosome 21 is highly polymorphic, useful not only as a definitive anchor for the genetic map, but also for studies of chromosome 21 nondisjunction, including the unequivocal assignment of meiotic origin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号