首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   19篇
  221篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   8篇
  2020年   1篇
  2019年   6篇
  2018年   9篇
  2017年   9篇
  2016年   5篇
  2015年   11篇
  2014年   16篇
  2013年   8篇
  2012年   20篇
  2011年   15篇
  2010年   10篇
  2009年   12篇
  2008年   19篇
  2007年   15篇
  2006年   12篇
  2005年   7篇
  2004年   6篇
  2003年   8篇
  2002年   13篇
  1999年   1篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1982年   1篇
排序方式: 共有221条查询结果,搜索用时 15 毫秒
1.
Transgenic chicory plants were obtained from different explantsco-cultured with Agrobacterium tumefaciens. Among tap-root,leaf and cotyledonary tissues, etiolated cotyledons showed thegreatest competence for transformation. The Agrobacterium strainsused contained either pGSGLUC1 or pTDE4 as a vector which carryboth the neomycin phosphotransferase II gene (nptll) for kanamycinresistance and ß-glucuronidase gene (uidA) under thecontrol of different promoters. Transformation was confirmedby NPTII enzymatic assay, histochemical analysis of GUS activityand DNA hybridization. Transgenic plants expressed both markergenes in root and shoot tissues. In leaves, GUS activity wasexpressed in all tissue types, whatever the nature of the promoter.Nevertheless, variable heterogeneous patterns of expressionwere observed in the different root tissues. Differential expression of the GUS fusions controlled by thedual TR or the CaMV 35S promoters are discussed. Key words: Chicory, genetic transformation, GUS activity, kanamycin resistance  相似文献   
2.
The interferon-inducible transmembrane (IFITM) family of proteins has been shown to restrict a broad range of viruses in vitro and in vivo by halting progress through the late endosomal pathway. Further, single nucleotide polymorphisms (SNPs) in its sequence have been linked with risk of developing severe influenza virus infections in humans. The number of viruses restricted by this host protein has continued to grow since it was first demonstrated as playing an antiviral role; all of which enter cells via the endosomal pathway. We therefore sought to test the limits of antimicrobial restriction by Ifitm3 using a knockout mouse model. We showed that Ifitm3 does not impact on the restriction or pathogenesis of bacterial (Salmonella typhimurium, Citrobacter rodentium, Mycobacterium tuberculosis) or protozoan (Plasmodium berghei) pathogens, despite in vitro evidence. However, Ifitm3 is capable of restricting respiratory syncytial virus (RSV) in vivo either through directly restricting RSV cell infection, or by exerting a previously uncharacterised function controlling disease pathogenesis. This represents the first demonstration of a virus that enters directly through the plasma membrane, without the need for the endosomal pathway, being restricted by the IFITM family; therefore further defining the role of these antiviral proteins.  相似文献   
3.
4.
5.

This study evaluated the effect of application of the semisynthetic triterpenes 3β-acetoxy-norlup-20-one (F4) and 3-chloro-4α,14α-dimethyl-5α-cholest-8-ene (F6) triterpene derivatives from Euphorbia officinarum on the growth of tomato seedlings under normal conditions and when challenged with the pathogens Verticillium dahliae and Agrobacterium tumefaciens. Foliar spray of F4 and F6 significantly improved growth rate, fresh weight, dry weight, and leaf area. In addition, they enhanced several physiological parameters including photosynthetic pigments, proline content, and nitrate reductase activity. Moreover, they induced H2O2 accumulation and increased the activity of several antioxidant enzymes such as catalase, ascorbate peroxidase, and guaiacol peroxidase. They also enhanced disease resistance against V. dahliae and A. tumefaciens. These results suggest that the two semisynthetic triterpenes represent new plant growth regulators and inducers of plant disease resistance.

  相似文献   
6.
Whereas remarkable advances have uncovered mechanisms that drive nervous system assembly, the processes responsible for the lifelong maintenance of nervous system architecture remain poorly understood. Subsequent to its establishment during embryogenesis, neuronal architecture is maintained throughout life in the face of the animal’s growth, maturation processes, the addition of new neurons, body movements, and aging. The Caenorhabditis elegans protein SAX-7, homologous to the vertebrate L1 protein family of neural adhesion molecules, is required for maintaining the organization of neuronal ganglia and fascicles after their successful initial embryonic development. To dissect the function of sax-7 in neuronal maintenance, we generated a null allele and sax-7S-isoform-specific alleles. We find that the null sax-7(qv30) is, in some contexts, more severe than previously described mutant alleles and that the loss of sax-7S largely phenocopies the null, consistent with sax-7S being the key isoform in neuronal maintenance. Using a sfGFP::SAX-7S knock-in, we observe sax-7S to be predominantly expressed across the nervous system, from embryogenesis to adulthood. Yet, its role in maintaining neuronal organization is ensured by postdevelopmentally acting SAX-7S, as larval transgenic sax-7S(+) expression alone is sufficient to profoundly rescue the null mutants’ neuronal maintenance defects. Moreover, the majority of the protein SAX-7 appears to be cleaved, and we show that these cleaved SAX-7S fragments together, not individually, can fully support neuronal maintenance. These findings contribute to our understanding of the role of the conserved protein SAX-7/L1CAM in long-term neuronal maintenance and may help decipher processes that go awry in some neurodegenerative conditions.  相似文献   
7.
A series of chiral cyclosulfamides have been synthesized in four steps, starting from N-benzoylaminoacids. Regioselective glycosylation of these pseudopyrimidic heterocycles was carried out after deprotection. Best glycosylation results were obtained by preliminary silylation of cyclosulfamides, and their condensation with a tetraacetylribofuranose and pentaacetylglucopyranose is described, which yielded the pseudonucleosides in a beta-anomeric configuration.  相似文献   
8.
Species can respond to environmental pressures through genetic and epigenetic changes and through phenotypic plasticity, but few studies have evaluated the relationships between genetic differentiation and phenotypic plasticity of plant species along changing environmental conditions throughout wide latitudinal ranges. We studied inter‐ and intrapopulation genetic diversity (using simple sequence repeats and chloroplast DNA sequencing) and inter‐ and intrapopulation phenotypic variability of 33 plant traits (using field and common‐garden measurements) for five populations of the invasive cordgrass Spartina densiflora Brongn. along the Pacific coast of North America from San Francisco Bay to Vancouver Island. Studied populations showed very low genetic diversity, high levels of phenotypic variability when growing in contrasted environments and high intrapopulation phenotypic variability for many plant traits. This intrapopulation phenotypic variability was especially high, irrespective of environmental conditions, for those traits showing also high phenotypic plasticity. Within‐population variation represented 84% of the total genetic variation coinciding with certain individual plants keeping consistent responses for three plant traits (chlorophyll b and carotenoid contents, and dead shoot biomass) in the field and in common‐garden conditions. These populations have most likely undergone genetic bottleneck since their introduction from South America; multiple introductions are unknown but possible as the population from Vancouver Island was the most recent and one of the most genetically diverse. S. densiflora appears as a species that would not be very affected itself by climate change and sea‐level rise as it can disperse, establish, and acclimate to contrasted environments along wide latitudinal ranges.  相似文献   
9.
Hepatitis C virus (HCV) core protein, expressed with a Semliki forest virus (SFV) replicon, self-assembles into HCV-like particles (HCV-LPs) at the endoplasmic reticulum (ER) membrane, providing an opportunity to study HCV particle morphogenesis by electron microscopy. Various mutated HCV core proteins with engineered internal deletions were expressed with this system, to identify core domains required or dispensable for HCV-LP assembly. The HCV core protein sequence was compared with its counterpart in GB virus B (GBV-B), the virus most closely related to HCV, to identify conserved domains. GBV-B and HCV display similar tropism for liver hepatocytes and their core proteins are organized similarly into three main domains (I, II and III), although GBV-B core is smaller and lacks approximately 35 amino acids (aa) in domain I. The deletion of short hydrophobic domains (aa 133-152 and 153-167 in HCV core) that appear highly conserved in domain II of both GBV-B and HCV core proteins resulted in loss of HCV core ER anchoring and self-assembly into HCV-LPs. The deletion of short domains found within domain I of HCV core protein but not in the corresponding domain of GBV-B core according to sequence alignment had contrasting effects. Amino acids 15-28 and 60-66 were shown to be dispensable for HCV-LP assembly and morphogenesis, whereas aa 88-106 were required for this process. The production of GBV-B core protein from a recombinant SFV vector was associated with specific ER ultrastructural changes, but did not lead to the morphogenesis of GBV-B-LPs, suggesting that different budding mechanisms occur in members of the Flaviviridae family.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号