首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   399篇
  免费   32篇
  2023年   1篇
  2022年   3篇
  2021年   11篇
  2020年   7篇
  2019年   10篇
  2018年   7篇
  2017年   14篇
  2016年   10篇
  2015年   17篇
  2014年   27篇
  2013年   31篇
  2012年   36篇
  2011年   36篇
  2010年   34篇
  2009年   18篇
  2008年   17篇
  2007年   23篇
  2006年   24篇
  2005年   22篇
  2004年   13篇
  2003年   20篇
  2002年   14篇
  2001年   9篇
  2000年   1篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1985年   1篇
  1983年   2篇
  1977年   1篇
  1970年   1篇
排序方式: 共有431条查询结果,搜索用时 15 毫秒
1.
Synopsis In 1987 and 1989 coelacanths were observed for the first time in their natural habitat with the help of submersibles. Coelacanths were found between 150–253 m depth, their preferential depth seems to be around 200 m; the water temperature ranged between 16.5–22.8° C. During the day coelacanths aggregate in small non-aggressive groups in sheltered lava-caves. Caves might be a limiting factor for distribution. At night they leave the caves for hunting by drifting singly along the steep lava slopes. They migrate between different caves located within a large home range covering more than 8 km coastline. Coelacanths are site-attached, some for a period of at least 2 years. Our own observations and earlier catch records show that only the west coast of Grand Comoro is a suitable coelacanth habitat with more structural complexity and prey fish abundance than other coastlines of the island. From our survey we estimated a total coelacanth population off Grand Comoro to be 150–210 individuals; a saturated population would be 370–510 individuals. This small relict population seems to be stable. International protection of coelacanths against commercial interests is needed  相似文献   
2.
In contrast to what has been postulated, penicillin G at its optimal lytic concentration of 0.1 g per ml did not lead to a detectable activation of autolytic wall processes in staphylococci in terms of the release of uniformly labelled wall fragments from cells pretreated with the drug for 1 h. Rather a considerable inhibition of this release was observed. A similarly profound inhibition of the release of peptidoglycan fragments occurred when staphylococci pretreated for 1 h with 0.1 g penicillin per ml acted as a source of crude autolysins on peptidoglycan isolated from labelled normal cells of the same strain. This clearly demonstrated that the overall inhibition of autolytic wall processes caused by penicillin was mainly due to a decreased total autolysin action rather than to an altered wall structure. Furthermore, no substantial penicillin-induced inhibition of the incorporation of 14C-N-acetylglucosamine into the staphylococcal wall could be observed before bacteriolysis started, i. e., approximately during the first 80 min of penicillin action. These results are not consistent with any of the models hitherto proposed for the action of penicillin.Dedicated to Prof. Dr. Gerhart Drews on the occasion of his 60th birthday  相似文献   
3.
The localization of the auxin receptor relevant to the control of elongation growth is still a matter of controversy. Auxin-induced elongation of maize coleoptile segments was measured by means of a high resolution auxanometer. When indole-3-acetic acid (IAA) was removed from the bathing solution, a rapid cessation of auxin-induced elongation was detected. This decline was delayed when the auxin efflux carrier was blocked by the phytotropins naphthylphthalamic acid (NPA) and pyrenoylbenzoic acid (PBA) or by triiodobenzoic acid (TIBA). The IAA concentration in NPA-pretreated segments was 2–3 times higher than in NPA-free controls 35 min after the removal of IAA in the bathing medium.
A similar rapid drop of growth after removal of auxin was observed for the rapidly-transported synthetic auxin, naphthaleneacetic acid (NAA). When the auxin efflux was blocked, growth induced by NAA was sustained much longer than IAA-stimulated elongation.
In comparison with NAA, the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) is known to be excreted very slowly by the efflux carrier. 2,4-D-induced growth remained at a stimulated level when the auxin was washed off, even in the absence of any auxin efflux inhibitor. We conclude from these results that the presence of intracellular auxin is a necessary and sufficient condition for sustained auxin-induced elongation growth, at least for the phases during the 2 h after its application. Consequently, we postulate the existence of an intracellular auxin receptor relevant to the control of growth.  相似文献   
4.
Suspension cultures of Coleus blumei accumulate very high amounts of rosmarinic acid, an ester of caffeic acid and 3,4-dihydroxyphenyllactate, in medium with elevated sucrose concentrations. Since the synthesis of this high level of rosmarinic acid occurs in only five days of the culture period, the activities of the enzymes involved in the biosynthesis are very high. Therefore all the enzymes necessary for the formation of rosmarinic acid from the precursors phenylalanine and tyrosine could be isolated from cell cultures of Coleus blumei: phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase, hydroxycinnamoyl:CoA ligase, tyrosine aminotransferase, hydroxyphenylpyruvate reductase, rosmarinic acid synthase and two microsomal 3- and 3-hydroxylases. The main characteristics of these enzymes of the proposed biosynthetic pathway of rosmarinic acid will be described.Abbreviations DHPL 3,4-dihydroxyphenyllactate - DHPP 3,4-dihydroxyphenylpyruvate - pHPL 4-hydroxyphenyllactate - pHPP 4-hydroxyphenylpyruvate - RA rosmarinic acid  相似文献   
5.
6.
7.
In the diseased and remodelled heart, increased activity and expression of Ca2+/calmodulin‐dependent protein kinase II (CaMKII), an excess of fibrosis, and a decreased electrical coupling and cellular excitability leads to disturbed calcium homeostasis and tissue integrity. This subsequently leads to increased arrhythmia vulnerability and contractile dysfunction. Here, we investigated the combination of CaMKII inhibition (using genetically modified mice expressing the autocamtide‐3‐related‐peptide (AC3I)) together with eplerenone treatment (AC3I‐Epler) to prevent electrophysiological remodelling, fibrosis and subsequent functional deterioration in a mouse model of chronic pressure overload. We compared AC3I‐Epler mice with mice only subjected to mineralocorticoid receptor (MR) antagonism (WT‐Epler) and mice with only CaMKII inhibition (AC3I‐No). Our data show that a combined CaMKII inhibition together with MR antagonism mitigates contractile deterioration as was manifested by a preservation of ejection fraction, fractional shortening, global longitudinal strain, peak strain and contractile synchronicity. Furthermore, patchy fibrosis formation was reduced, potentially via inhibition of pro‐fibrotic TGF‐β/SMAD3 signalling, which related to a better global contractile performance and a slightly depressed incidence of arrhythmias. Furthermore, the level of patchy fibrosis appeared significantly correlated to eplerenone dose. The addition of eplerenone to CaMKII inhibition potentiates the effects of CaMKII inhibition on pro‐fibrotic pathways. As a result of the applied strategy, limiting patchy fibrosis adheres to a higher synchronicity of contraction and an overall better contractile performance which fits with a tempered arrhythmogenesis.  相似文献   
8.
9.
10.
Proteomics-based clinical studies have been shown to be promising strategies for the discovery of novel biomarkers of a particular disease. Here, we present a study of hepatocellular carcinoma (HCC) that combines complementary two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography (LC-MS)-based approaches of quantitative proteomics. In our proteomic experiments, we analyzed a set of 14 samples (7 × HCC versus 7 × nontumorous liver tissue) with both techniques. Thereby we identified 573 proteins that were differentially expressed between the experimental groups. Among these, only 51 differentially expressed proteins were identified irrespective of the applied approach. Using Western blotting and immunohistochemical analysis the regulation patterns of six selected proteins from the study overlap (inorganic pyrophosphatase 1 (PPA1), tumor necrosis factor type 1 receptor-associated protein 1 (TRAP1), betaine-homocysteine S-methyltransferase 1 (BHMT)) were successfully verified within the same sample set. In addition, the up-regulations of selected proteins from the complements of both approaches (major vault protein (MVP), gelsolin (GSN), chloride intracellular channel protein 1 (CLIC1)) were also reproducible. Within a second independent verification set (n = 33) the altered protein expression levels of major vault protein and betaine-homocysteine S-methyltransferase were further confirmed by Western blots quantitatively analyzed via densitometry. For the other candidates slight but nonsignificant trends were detectable in this independent cohort. Based on these results we assume that major vault protein and betaine-homocysteine S-methyltransferase have the potential to act as diagnostic HCC biomarker candidates that are worth to be followed in further validation studies.Hepatocellular carcinoma (HCC)1 currently is the fifth most common malignancy worldwide with an annual incidence up to 500 per 100,000 individuals depending on the geographic region investigated. Whereas 80% of new cases occur in developing countries, the incidence increases in industrialized nations including Western Europe, Japan, and the United States (1). To manage patients with HCC, tumor markers are very important tools for diagnosis, indicators of disease progression, outcome prediction, and evaluation of treatment efficacy. Several tumor markers have been reported for HCC, including α-fetoprotein (AFP) (2), Lens culinaris agglutinin-reactive fraction of AFP (AFP-L3) (3), and des-γ-carboxyl prothrombin (DCP) (4). However, none of these tumor markers show 100% sensitivity or specificity, which calls for new and better biomarkers.To identify novel biomarkers of HCC, many clinical studies using “omics”-based methods have been reported over the past decade (56). In particular, the proteomics-based approach has turned out to be a promising one, offering several quantification techniques to reveal differences in protein expression that are caused by a particular disease. In most studies, the well-established 2D-DIGE technique has been applied for protein quantification followed by identification via mass spectrometry (715). Even if the quantification is very accurate and sensitive in this gel-based approach, the relatively high amount of protein sample necessary for protein identification is the major disadvantage of this technique. Several mass-spectrometry-based quantitative studies using labeling-techniques like SILAC (stable isotope labeling by amino acids in cell culture) or iTRAQ (isobaric tags for relative and absolute quantification) have also been carried out for biomarker discovery of HCC (1618). Here, the concomitant protein quantification and identification in a mass spectrometer allows high-throughput analyses. However, such experiments imply additional labeling reactions (in case of iTRAQ) or are limited to tissue culture systems (in case of SILAC). In the latter case, one can overcome the limitation by using the isotope-labeled proteins obtained from tissue culture as an internal standard added to a corresponding tissue sample. This approach is known as CDIT (culture-derived isotope tags) and was applied in a HCC study, very recently (19). Label-free proteomics approaches based on quantification by ion-intensities or spectral counting offer another possibility for biomarker discovery. These approaches are relatively cheap compared with the labeling approaches, because they do not require any labeling reagents and furthermore they allow for high-throughput and sensitive analyses in a mass spectrometer. A quantitative study of HCC using spectral counting has been reported (20), whereas to our knowledge an ion-intensity-based study has not been performed yet. Apart from these quantification strategies, protein alterations in HCC have been studied by MALDI imaging, as well. Here, the authors could show that based on its proteomic signature, hepatocellular carcinoma can be discriminated with high accuracy from liver metastasis samples or other cancer types (21) as well as liver cirrhosis (22). Based on these results, it could be assumed that MALDI imaging might be a promising alternative to standard histological methods in the future.Here, we report a quantitative proteomic study that combines two different techniques, namely the well-established 2D-DIGE approach and a label-free ion-intensity-based quantification via mass spectrometry and liquid chromatography. To our knowledge this is the first time such a combined study was performed with regard to hepatocellular carcinoma. By comparing the results of both studies, we aim to identify high-confident biomarker candidates of HCC, as gel- and LC-MS-based techniques are complementary. To verify the differential protein expressions detected in our proteomic studies we performed additional immunological verifications for selected proteins within two different sample sets (Fig. 1).Open in a separate windowFig. 1.Schematic representation of the applied workflow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号