首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   24篇
  2023年   4篇
  2022年   6篇
  2021年   13篇
  2020年   12篇
  2019年   22篇
  2018年   24篇
  2017年   3篇
  2016年   12篇
  2015年   11篇
  2014年   17篇
  2013年   16篇
  2012年   13篇
  2011年   6篇
  2010年   8篇
  2009年   6篇
  2008年   5篇
  2007年   7篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1981年   1篇
排序方式: 共有200条查询结果,搜索用时 487 毫秒
1.
Test strains suspended in skim milk, quickly frozen in dry ice-ethanol, and stored at - 70°C can be used as quality control samples that are immediately available by quickly thawing at 37°C. The samples remain homogeneous and stable for at least 1 year, except for Aeromonas hydrophila, which decreases 20 to 30% in 1 year.  相似文献   
2.
The application of chondroitinase ABC I (cABC I) in damaged nervous tissue is believed to prune glycosaminoglycan chains of proteoglycans, thereby facilitates axon regeneration. However, the utilization of cABC I as therapeutics is notably restricted due to its thermal instability. In the present study, we have explored the possibility of thermostabilization of cABC I through release of its conformational strain using Ramachandran plot information. In this regard, Gln140 with non-optimal φ and ψ values were replaced with Gly, Ala and Asn. The results indicated that Q140G and Q140A mutants were able to improve both activity and thermal stability of the enzyme while Q140N variant reduced the enzyme activity and destabilized it. Moreover, the two former variants displayed a remarkable resistance to trypsin degradation. Structural analysis of all mutants showed an increase in intrinsic fluorescence intensity and secondary structure content of Q140G and Q140A compared to the wild type which indicated more compact structure upon mutation. This investigation demonstrated that relief of conformational tension can be considered as a possible approach to increase the stability of the protein.  相似文献   
3.
ABSTRACT

Most of the processes that occur in the mind and body follow natural rhythms. Those with a cycle length of about one day are called circadian rhythms. These rhythms are driven by a system of self-sustained clocks and are entrained by environmental cues such as light-dark cycles as well as food intake. In mammals, the circadian clock system is hierarchically organized such that the master clock in the suprachiasmatic nuclei of the hypothalamus integrates environmental information and synchronizes the phase of oscillators in peripheral tissues.

The circadian system is responsible for regulating a variety of physiological and behavioral processes, including feeding behavior and energy metabolism. Studies revealed that the circadian clock system consists primarily of a set of clock genes. Several genes control the biological clock, including BMAL1, CLOCK (positive regulators), CRY1, CRY2, PER1, PER2, and PER3 (negative regulators) as indicators of the peripheral clock.

Circadian has increasingly become an important area of medical research, with hundreds of studies pointing to the body’s internal clocks as a factor in both health and disease. Thousands of biochemical processes from sleep and wakefulness to DNA repair are scheduled and dictated by these internal clocks. Cancer is an example of health problems where chronotherapy can be used to improve outcomes and deliver a higher quality of care to patients.

In this article, we will discuss knowledge about molecular mechanisms of the circadian clock and the role of clocks in physiology and pathophysiology of concerns.  相似文献   
4.
Mimicking the structure of extracellular matrix (ECM) of myocardium is necessary for fabrication of functional cardiac tissue. The superparamagnetic iron oxide nanoparticles (SPIONs, Fe3O4), as new generation of magnetic nanoparticles (NPs), are highly intended in biomedical studies. Here, SPION NPs (1 wt%) were synthesized and incorporated into silk-fibroin (SF) electrospun nanofibers to enhance mechanical properties and topography of the scaffolds. Then, the mouse embryonic cardiac cells (ECCs) were seeded on the scaffolds for in vitro studies. The SPION NPs were studied by scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscope (TEM). SF nanofibers were characterized after incorporation of SPIONs by SEM, TEM, water contact angle measurement, and tensile test. Furthermore, cytocompatibility of scaffolds was confirmed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. SEM images showed that ECCs attached to the scaffolds with elongated morphologies. Also, the real-time PCR and immunostaining studies approved upregulation of cardiac functional genes in ECCs seeded on the SF/SPION-casein scaffolds including GATA-4, cardiac troponin T, Nkx 2.5, and alpha-myosin heavy chain, compared with the ones in SF. In conclusion, incorporation of core-shells in SF supports cardiac differentiation, while has no negative impact on ECCs' proliferation and self-renewal capacity.  相似文献   
5.
.The fig leaf roller or Fig-tree Skeletoniser, Choreutis nemorana (Lep.: Choreutidae), is a destructive pest of fig trees found in some fig-growing areas of Iran. The larvae feed on the upper level of leaves, near the main vein. In this study, digestive carbohydrases including α-glucosidase, β-glucosidase, α-galactosidase, β-galactosidase and proteinases including trypsin, chymotrypsin and elastase were investigated. The results showed that the carbohydrases were present in the alimentary tracts of the pest. Optimum pH for α-glucosidase and β-glucosidase activity was at pH 6.0 and 7.0, respectively. Maximum activity of α-galactosidase and β-galactosidase occurred at pH 6.0. Total proteolitic activity against the substrate azocasein was optimally occurred at pH 10.0. The greatest activity of trypsin, chymotrypsin and elastase was determined at pH 10.0, 11.0 and 11.0, respectively. Zymogram analyses using nitrocellulose membrane revealed two trypsin isoforms in which one of them was completely inhibited by Soybean Kunitz inhibitor and the other was notably inhibited.  相似文献   
6.
7.
Leaching of metals due to enhanced mobility during ethylenediaminetetraacetic acid (EDTA)-assisted phytoextraction has been demonstrated as one of the potential hazards associated with this technology. This study was conducted to determine phytoextraction efficiency of Chenopodium album L. for Pb and EDTA-assisted (1.5, 3, and 9 mmol kg?1) phytoextraction and potential for leaching of Pb. The results demonstrated that BCFshoot (bioconcentration factor) was relatively higher than the BCFroot. Translocation factor in the shoot was higher than the roots. Thus, plant species would be applicable for Pb phytoextraction. EDTA enhanced translocation of Pb from roots to shoots. Lead content in the plant parts was maximum in the shoot and root of 9EDTA and 3EDTA, respectively. However, there was no significant difference between 3EDTA and 9EDTA. Lead concentration in the plant parts increased significantly from vegetative stage into flowering stage. Lead content taken up by the plant was lowest when EDTA was applied in a single dose. Therefore, application of EDTA in several increments rather than a single split reduced the leaching risk. Totally, optimum phytoextraction was observed when 3 mmol kg?1 EDTA was added in triple dosage 60 days after the plant cultivation under triple application mode. The results indicated the plant has the potential for Pb phytoextraction, but it should not be used unless the biomass containing such accumulated metal is removed for disposal. Significant improvement over current ETDA-assisted phytoextraction of Pb may be possible but should be implemented cautiously because of environmental risk.  相似文献   
8.
Plants grown in phosphorus-deprived solutions often exhibit disruption of water transport due to reduction in root hydraulic conductivity (Lpr). To uncover the relationship between root Lpr and water permeability coefficient (Pf) of plasma membrane and the role of aquaporins, we evaluated Pf of plasma membrane and also PIP-type aquaporin gene expression in tobacco (Nicotiana tabacum L.) plant roots after seven days P-deprivation. The results showed significant reduction in sap flow rate (Jv) and osmotic root hydraulic conductivity (Lpr-o) in P-deprived roots. These effects were reversed 24 h after P-resupplying. Interestingly, the Pf of root protoplasts was 57% lower in P-deprived plants compared with P-sufficient ones. The expression of NtPIP1;1 and NtPIP2;1 aquaporins did not change significantly in P-deprived plants compared with P-sufficient ones, but the copy number of NtAQP1 increased significantly in P-deprived plants. P-deprivation did not change Lpr-o significantly in antisense NtAQP1 plants. Taken together, these findings suggest that P-deprivation may play an important role in modulation of root hydraulic conductivity by affecting Pf in transcellular pathway of water flow across roots and aquaporins. Finally, we concluded that dominant water transport pathway under P-deprivation was transcellular one.  相似文献   
9.
Plasmonics - A tunable plasmonic filter waveguide with indium antimonide activated by graphene layer configuration is proposed and numerically investigated. We demonstrate that the proposed tunable...  相似文献   
10.
Human influenza A viruses (IAVs) cause global pandemics and epidemics, which remains a nonignorable serious concern for public health worldwide. To combat the surge of viral outbreaks, new treatments are urgently needed. Here, we design a new vaccine based on virus-like particles (VLPs) and show how intranasal administration of this vaccine triggers protective immunity, which can be exploited for the development of new therapies. H1N1 VLPs were produced in baculovirus vectors and were injected into BALB/c mice by the intramuscular (IM) or intranasal (IN) route. We found that there were significantly higher inflammatory cell and lymphocyte concentrations in bronchoalveolar lavage samples and the lungs of IN immunized mice; however, the IM group had little signs of inflammatory responses. On the basis of our results, immunization with H1N1 influenza VLP elicited a strong T cell immunity in BALB/c mice. Despite T cell immunity amplification after both IN and IM vaccination methods in mice, IN-induced T cell responses were significantly more intense than IM-induced responses, and this was likely related to an increased number of both CD11bhigh and CD103+ dendritic cells in mice lungs after IN administration of VLP. Furthermore, evaluation of interleukin-4 and interferon gamma cytokines along with several chemokine receptors showed that VLP vaccination via IN and IM routes leads to a greater CD4+ Th1 and Th2 response, respectively. Our findings indicated that VLPs represent a potential strategy for the development of an effective influenza vaccine; however, employing relevant routes for vaccination can be another important part of the universal influenza vaccine puzzle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号