首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  8篇
  2021年   1篇
  2019年   3篇
  2013年   2篇
  2012年   1篇
  2003年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
A small number of stress-responsive genes, such as those of the mitochondrial F1F0-ATP synthase complex, are encoded by both the nucleus and mitochondria. The regulatory mechanism of these joint products is mysterious. The expression of 6-kDa subunit (MtATP6), a relatively uncharacterized nucleus-encoded subunit of F0 part, was measured during salinity stress in salt-tolerant and salt-sensitive cultivated wheat genotypes, as well as in the wild wheat genotypes, Triticum and Aegilops using qRT-PCR. The MtATP6 expression was suddenly induced 3 h after NaCl treatment in all genotypes, indicating an early inducible stress-responsive behavior. Promoter analysis showed that the MtATP6 promoter includes cis-acting elements such as ABRE, MYC, MYB, GTLs, and W-boxes, suggesting a role for this gene in abscisic acid-mediated signaling, energy metabolism, and stress response. It seems that 6-kDa subunit, as an early response gene and nuclear regulatory factor, translocates to mitochondria and completes the F1F0-ATP synthase complex to enhance ATP production and maintain ion homeostasis under stress conditions. These communications between nucleus and mitochondria are required for inducing mitochondrial responses to stress pathways. Dual targeting of 6-kDa subunit may comprise as a mean of inter-organelle communication and save energy for the cell. Interestingly, MtATP6 showed higher and longer expression in the salt-tolerant wheat and the wild genotypes compared to the salt-sensitive genotype. Apparently, salt-sensitive genotypes have lower ATP production efficiency and weaker energy management than wild genotypes; a stress tolerance mechanism that has not been transferred to cultivated genotypes.  相似文献   
2.
Diabetic retinopathy (DR) is one of the major complications of diabetes mellitus that causes diabetic macular edema and visual loss. DR is categorized, based on the presence of vascular lesions and neovascularization, into non-proliferative and proliferative DR. Vascular changes in DR correlate with the cellular damage and pathological changes in the capillaries of blood-retinal barrier. Several cytokines have been involved in inducing neovascularization. These cytokines activate different signaling pathways which are mainly responsible for the complications of DR. Recently; microRNAs (miRNAs) have been introduced as the key factors in the regulation of the cytokine expression which plays a critical role in neovascularization of retinal cells. Some studies have demonstrated that changing levels of miRNAs have essential role in the pathophysiology of vascular changes in patients with DR. The aim of this study is to identify the effects of miRNAs in the pathogenesis of DR via activating neovascularization pathways.  相似文献   
3.
Exclusion of sodium ions from cells is one of the key salinity tolerance mechanisms in plants. The high-affinity cation transporter (HKT1;5) is located in the plasma membrane of the xylem, excluding Na+ from the parenchyma cells to reduce Na+ concentration. The regulatory mechanism and exact functions of HKT genes from different genotypic backgrounds are relatively obscure. In this study, the expression patterns of HKT1;5 in A and D genomes of wheat were investigated in root and leaf tissues of wild and domesticated genotypes using real-time PCR. In parallel, the K+/Na+ ratio was measured in salt-tolerant and salt-sensitive cultivars. Promoter analysis were applied to shed light on underlying regulatory mechanism of the HKT1;5 expression. Gene isolation and qPCR confirmed the expression of HKT1;5 in the A and D genomes of wheat ancestors (Triticum boeoticum, AbAb and Aegilops crassa, MMDD, respectively). Interestingly, earlier expression of HKT1;5 was detected in leaves compared with roots in response to salt stress. In addition, the salt-tolerant genotypes expressed HKT1;5 before salt-sensitive genotypes. Our results suggest that HKT1;5 expression follows a tissue- and genotype-specific pattern. The highest level of HKT1;5 expression was observed in the leaves of Aegilops, 6 h after being subjected to high salt stress (200 mM). Overall, the D genome allele (HKT1;5-D) showed higher expression than the A genome (HKT1;5-A) allele when subjected to a high NaCl level. We suggest that the D genome is more effective regarding Na+ exclusion. Furthermore, in silico promoter analysis showed that TaHKT1;5 genes harbor jasmonic acid response elements.  相似文献   
4.
Raschke K  Shabahang M  Wolf R 《Planta》2003,217(4):639-650
We explored the functioning of the slowly activating anion conductance, S-type or SLAC, and of the quickly activating anion conductance, R-type or QUAC, in whole guard cells of Vicia faba L.; details of QUAC activity had not previously been demonstrated in guard cells possessing their walls. The discontinuous single-electrode voltage-clamp method was used to record current responses to voltage pulses and voltage ramps as well as the free-running membrane voltage. At all voltages tested between -200 and 60 mV, SLAC activated with two components, one had a time constant similar to 7 s, the other similar to 40 s. The current-voltage relationship resembled that obtained by patch-clamp experiments. In pulse experiments and 1-s ramps, QUAC activity appeared with half-maximum activation near -50 mV and full activation above -10 mV; it inactivated with a half-time of approximately 10 s. Inactivation of QUAC at -40 mV led to the appearance of SLAC. After deactivation of SLAC at -200 mV, QUAC could be activated again. We concluded that voltage-dependent interchanges between SLAC and QUAC had occurred. Frequently, SLAC and QUAC were active simultaneously in the same cell. Abscisic acid (ABA, 20 microM) activated SLAC as well as QUAC. External Ca2+ was not required, but enhanced the activation of QUAC. Rises in the partial pressure of CO2, in the range between 0 and 700 microbar, caused rapid and reversible increases in the activity of SLAC (and outward currents of K+). QUAC also responded to CO2, however in an unpredictable manner (either by increased or by decreased activity). Oscillations in the free-running membrane voltage arose either spontaneously or after changes in CO2. They were correlated with periodic activations and inactivations of QUAC and required the simultaneous activity of an electrogenic pump.  相似文献   
5.

This study was carried out to evaluate the effects of probiotic supplementation on genetic and metabolic profiles in patients with gestational diabetes mellitus (GDM) who were not on oral hypoglycemic agents. This randomized, double-blind, placebo-controlled clinical trial was conducted in 48 patients with GDM. Participants were randomly divided into two groups to intake either probiotic capsule containing Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium bifidum, Lactobacillus fermentum (2 × 109 CFU/g each) (n = 24) or placebo (n = 24) for 6 weeks. Probiotic intake upregulated peroxisome proliferator-activated receptor gamma (P = 0.01), transforming growth factor beta (P = 0.002) and vascular endothelial growth factor (P = 0.006), and downregulated gene expression of tumor necrosis factor alpha (P = 0.03) in peripheral blood mononuclear cells of subjects with GDM. In addition, probiotic supplementation significantly decreased fasting plasma glucose (β, − 3.43 mg/dL; 95% CI, − 6.48, − 0.38; P = 0.02), serum insulin levels (β, − 2.29 μIU/mL; 95% CI, − 3.60, − 0.99; P = 0.001), and insulin resistance (β, − 0.67; 95% CI, − 1.05, − 0.29; P = 0.001) and significantly increased insulin sensitivity (β, 0.009; 95% CI, 0.004, 0.01; P = 0.001) compared with the placebo. Additionally, consuming probiotic significantly decreased triglycerides (P = 0.02), VLDL-cholesterol (P = 0.02), and total-/HDL-cholesterol ratio (P = 0.006) and significantly increased HDL-cholesterol levels (P = 0.03) compared with the placebo. Finally, probiotic administration led to a significant reduction in plasma malondialdehyde (P < 0.001), and a significant elevation in plasma nitric oxide (P = 0.01) and total antioxidant capacity (P = 0.01) was observed compared with the placebo. Overall, probiotic supplementation for 6 weeks to patients with GDM had beneficial effects on gene expression related to insulin and inflammation, glycemic control, few lipid profiles, inflammatory markers, and oxidative stress.

  相似文献   
6.

This study represents an optimized protocol for cell line culture of Matricaria chamomilla and the impact of clino-rotation on cell division, cell growth, and antioxidant enzyme activities for the first time. The cell suspension was transferred in the solid MS medium supplied with 2, 4-D, and KIN. Then the calli produced from a cell line were selected for callus subculture and clino-rotation treatment for 7 days by a 2D-clinostat. A significant rise of fresh and dry weights, cell division, total soluble sugar, reducing sugar, and starch contents were detected under clino-rotation. Protein content approximately unchanged in microgravity-treated calli. Antioxidant enzymes activities, such as peroxidase, catalase (CAT), and superoxide dismutase were elevated in calli exposed to microgravity. CAT activity showed a more than three-fold increase than that of control. According to native polyacrylamide gel electrophoresis, all the antioxidant enzymes isoforms were stronger in clino-rotated calli than that of the untreated control. Microgravity also stimulated H2O2 production and markedly adjusted lipid peroxidation in calli exposed to clino-rotation. These findings suggest that clino-rotation with stimulation of carbohydrate accumulation and antioxidant enzymes mitigates oxidative stress and improves growth and cell division.

  相似文献   
7.
Diabetic retinopathy (DR) is a major cause of vision reduction in diabetic patients. Hyperglycemia is a known instigator for the development of DR, even though the role of oxidative stress pathways in the pathogenesis of DR is established. The studies indicate that microRNAs (miRNAs) are significant to the etiology of DR; changes in miRNAs expression levels may be associated with onset and progression of DR. In addition, miRNAs have emerged as a useful disease marker due to their availability and stability in detecting the severity of DR. The relationship between miRNAs expression levels and oxidative stress pathways has been investigated in several studies. The aim of this study is the examination of function and expression levels of target miRNAs in oxidative stress pathway and pathogenesis of diabetic retinopathy.  相似文献   
8.
Stable crystalline phosphorus ylides were obtained in excellent yields from the 1:1:1 addition reaction between triphenylphosphine (TPP) and dialkyl acetylenedicarboxylates, in the presence of NH-acids, such as benzhydrazide. To determine the kinetic parameters of the reactions, they were monitored by UV spectrophotometery. The second order fits were automatically drawn and the values of the second order rate constant (k2) were calculated using standard equations within the program. At the temperature range studied the dependence of the second order rate constant (Ln k2) on reciprocal temperature was compatible with Arrhenius equation. This provided the relevant plots to calculate the activation energy of all reactions. Furthermore, useful information were obtained from studies of the effect of solvent, structure of reactants (different alkyl groups within the dialkyl acetylenedicarboxylates) and also concentration of reactants on the rate of reactions. On the basis of experimental data the proposed mechanism was confirmed according to the obtained results and a steady state approximation and the first step (k2) and third (k3) steps of the reactions were recognized as the rate determining steps, respectively. In addition, three speculative proposed mechanisms were theoretically investigated using quantum mechanical calculation. The results, arising from the second and third speculative mechanisms, were far from the experimental data. Nevertheless, there was a good agreement between the theoretical kinetic data, emerge from the first speculative mechanism, and experimental kinetic data of proposed mechanism.
Figure
Kinetics and mechanistic study in a synthesis reaction between triphenylphosphine (1) and dialkyl acetylenedicarboxylates (2) in the presence of benzhydrazide (3) Theoretical and Experimental investigation  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号