首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4285篇
  免费   256篇
  2022年   20篇
  2021年   36篇
  2019年   28篇
  2018年   40篇
  2017年   43篇
  2016年   64篇
  2015年   97篇
  2014年   111篇
  2013年   251篇
  2012年   191篇
  2011年   185篇
  2010年   117篇
  2009年   108篇
  2008年   222篇
  2007年   220篇
  2006年   245篇
  2005年   207篇
  2004年   218篇
  2003年   191篇
  2002年   181篇
  2001年   149篇
  2000年   142篇
  1999年   116篇
  1998年   67篇
  1997年   58篇
  1996年   49篇
  1995年   41篇
  1994年   36篇
  1993年   42篇
  1992年   76篇
  1991年   82篇
  1990年   73篇
  1989年   75篇
  1988年   80篇
  1987年   62篇
  1986年   69篇
  1985年   42篇
  1984年   52篇
  1983年   39篇
  1982年   39篇
  1981年   27篇
  1980年   37篇
  1979年   47篇
  1978年   30篇
  1977年   27篇
  1976年   23篇
  1975年   19篇
  1974年   26篇
  1973年   24篇
  1968年   20篇
排序方式: 共有4541条查询结果,搜索用时 15 毫秒
1.
2.
In order to evaluate the importance of estrogen production in tumor and surrounding tissues, we measured mRNA expression levels of 5 enzymes participating to estrogen synthesis in situ and 4 breast cancer-related proteins in 27 pairs of tumor and non-malignant tissues. Steroid sulfatase (STS) mRNA was more frequently detected in tumor tissues rather than in their non-malignant counterparts. Estrogen sulfotransferase (EST) was constantly expressed with high level not only in tumor tissues but also in their surrounding non-malignant counterparts. In contrast, mRNA expression levels of aromatase, and 17β-hydroxysteroid dehydrogenase type I and II were relatively low and detected only in small proportion of the patients. We also measured the mRNA expression levels of the same nine genes in tumor tissues of 197 breast cancer patients, and analyzed relationship between the mRNA expression level and the clinicopathological parameters. The mRNA expression levels of STS, aromatase and erbB2 in tumor tissues increased as breast cancer progressed. The tumoral mRNA expression levels of STS, estrogen receptor β, and erbB2 in patients with recurrence were higher than those in patients without recurrence. Upregulation of STS expression plays an important role in tumor progression of human breast cancer and is considered to be responsible for estrogen production in tumor and surrounding tissues.  相似文献   
3.
Accumulation of hyperphosphorylated tau in the entorhinal cortex (EC) is one of the earliest pathological hallmarks in patients with Alzheimer’s disease (AD). It can occur before significant Aβ deposition and appears to “spread” into anatomically connected brain regions. To determine whether this early-stage pathology is sufficient to cause disease progression and cognitive decline in experimental models, we overexpressed mutant human tau (hTauP301L) predominantly in layer II/III neurons of the mouse EC. Cognitive functions remained normal in mice at 4, 8, 12 and 16 months of age, despite early and extensive tau accumulation in the EC. Perforant path (PP) axon terminals within the dentate gyrus (DG) contained abnormal conformations of tau even in young EC-hTau mice, and phosphorylated tau increased with age in both the EC and PP. In old mice, ultrastructural alterations in presynaptic terminals were observed at PP-to-granule cell synapses. Phosphorylated tau was more abundant in presynaptic than postsynaptic elements. Human and pathological tau was also detected within hippocampal neurons of this mouse model. Thus, hTauP301L accumulation predominantly in the EC and related presynaptic pathology in hippocampal circuits was not sufficient to cause robust cognitive deficits within the age range analyzed here.  相似文献   
4.
5.
6.
7.
In order to control visually-guided voluntary movements, the central nervous system (CNS) must solve the following three computational problems at different levels: (1) determination of a desired trajectory in the visual coordinates, (2) transformation of the coordinates of the desired trajectory to the body coordinates and (3) generation of motor command. In this paper, the second and the third problems are treated at computational, representational and hardware levels of Marr. We first study the problems at the computational level, and then propose an iterative learning scheme as a possible algorithm. This is a trial and error type learning such as repetitive training of golf swing. The amount of motor command needed to coordinate activities of many muscles is not determined at once, but in a step-wise, trial and error fashion in the course of a set of repetitions. Actually, the motor command in the (n+1)-th iteration is a sum of the motor command in then-th iteration plus two modification terms which are, respectively, proportional to acceleration and speed errors between the desired trajectory and the realized trajectory in then-th iteration. We mathematically formulate this iterative learning control as a Newton-like method in functional spaces and prove its convergence under appropriate mathematical conditions with use of dynamical system theory and functional analysis. Computer simulations of this iterative learning control of a robotic manipulator in the body or visual coordinates are shown. Finally, we propose that areas 2, 5, and 7 of the sensory association cortex are possible sites of this learning control. Further we propose neural network model which acquires transformation matrices from acceleration or velocity to motor command, which are used in these schemes.  相似文献   
8.
α-Glucosidases or maltases (EC 3.2.1.20) were purified to electrophoretic homogeneity from a respective strain of Sacchromyces cerevisiae which carries a single MAL gene, either MALα, MALβ or MALγ, using gluconate-Sepharose affinity chromography and isoelectrofocusing. Of these maltases, two types of maltase were obtained from the MALγ strain, the pI values of which were 5.6 and 5.9. From the MALα and MALβ strain was obtained only one type of maltase with the pI at 5.6 which was identical to one of the maltases from the MALγ strain. These four maltases possessed the same properties, except for pI. They were monomers with molecular weights of between 66 000 and 67 000. With regard to the substrate specificity, they hydrolyzed maltose and sucrose exclusively but not α-methulglucoside nor maltooligosaccharide. They did not differ in immunological properties.  相似文献   
9.
When energetic particles irradiate matter, it becomes activated by nuclear reactions. Radioactivation induced cellular effects are not clearly understood, but it could be a part of bystander effects. This investigation is aimed at understanding the biological effects from radioactivation in solution induced by hadron radiation. Water or phosphate buffered saline was activated by being exposed to hadron radiation including protons, carbon- and iron-ions. 1 mL of radioactivated solution was transferred to flasks with Chinese hamster ovary (CHO) cells cultured in 5 mL of complete media. The induction of sister chromatid exchanges (SCE) was used to observe any increase in DNA damage responses. The energy spectrum and the half-lives of the radioactivation were analyzed by NaI scintillation detector in order to identify generated radionuclides. In the radioactivated solution, 511 keV gamma-rays were observed, and their half-lives were approximately 2 min, 10 min, and 20 min. They respectively correspond to the beta+ decay of 15O, 13N, and 11C. The SCE frequencies in CHO cells increased depending on the amount of radioactivation in the solution. These were suppressed with a 2-hour delayed solution transfer or pretreatment with dimethyl sulfoxide (DMSO). Our results suggest that the SCE induction by radioactivated solution was mediated by free radicals produced by the annihilated gamma-rays. Since the SCE induction and DMSO modulation are also reported in radiation-induced bystander effects, our results imply that radioactivation of the solution may have some contribution to the bystander effects from hadron radiation. Further investigations are required to assess if radioactivation effects would attribute an additional level of cancer risk of the hadron radiation therapy itself.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号