首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   3篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2004年   2篇
  2002年   1篇
  1995年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Herpesviral capsids are assembled in the host cell nucleus and are subsequently translocated to the cytoplasm. During this process it has been demonstrated that the human cytomegalovirus proteins pUL50 and pUL53 interact and form, together with other viral and cellular proteins, the nuclear egress complex at the nuclear envelope. In this study we provide evidence that specific residues of a conserved N-terminal region of pUL50 determine its intranuclear interaction with pUL53. In silico evaluation and biophysical analyses suggested that the conserved region forms a regular secondary structure adopting a globular fold. Importantly, site-directed replacement of individual amino acids by alanine indicated a strong functional influence of specific residues inside this globular domain. In particular, mutation of the widely conserved residues Glu-56 or Tyr-57 led to a loss of interaction with pUL53. Consistent with the loss of binding properties, mutants E56A and Y57A showed a defective function in the recruitment of pUL53 to the nuclear envelope in expression plasmid-transfected and human cytomegalovirus-infected cells. In addition, in silico analysis suggested that residues 3-20 form an amphipathic α-helix that appears to be conserved among Herpesviridae. Point mutants revealed a structural role of this N-terminal α-helix for pUL50 stability rather than a direct role in the binding of pUL53. In contrast, the central part of the globular domain including Glu-56 and Tyr-57 is directly responsible for the functional interaction with pUL53 and thus determines formation of the basic nuclear egress complex.  相似文献   
2.
3.
Endogenous erythroid colony (EEC) formation is one of the minor criteria for diagnosing polycythemia vera (PV) according to 2008 WHO diagnostic criteria. But EEC requires bone marrow aspiration and sophisticated laboratory procedures; therefore, practically it is rarely used to diagnose PV. Insulin-like growth factor 1 receptor (IGF-1R) was found to be constitutively phosphorylated and was responsible for the EEC formation in PV; therefore, we measured IGF-1R levels in the peripheral blood of 26 PV patients and compared them with those of 33 patients with secondary polycythemia and 29 normal controls. Among the PV patients, 16 were treated with only phlebotomy, 9 received hydroxyurea, and 1 was treated with ruxolinitinib. We found that PV patients treated with only phlebotomy had significantly higher IGF-1R levels than did those PV patients treated with hydroxyurea or ruxolinitinib. None of the secondary PV patients or normal controls had elevated IGR-1R levels, while 14 of 16 (87%) PV patients had significantly elevated IGF-1R levels. The new 2016 WHO has eliminated EEC as a minor criterion for diagnosing PV, but there are still some cases that cannot be definitively diagnosed by the current criteria. Therefore, we suggest that quantifying the IGF-1R level in peripheral blood by flow cytometry to replace EEC as the minor criterion for diagnosing PV.  相似文献   
4.
Apolipoprotein M (ApoM) is a 25-kDa HDL-associated apolipoprotein and a member of the lipocalin family of proteins. Mature apoM retains its signal peptide, which serves as a lipid anchor attaching apoM to the lipoproteins, thereby keeping it in the circulation. Studies in mice have suggested apoM to be antiatherogenic, but its physiological function is yet unknown. We have now determined the 1.95 Å resolution crystal structure of recombinant human apoM expressed in Escherichia coli and made the unexpected discovery that apoM, although refolded from inclusion bodies, was in complex with fatty acids containing 14, 16 or 18 carbon atoms. ApoM displays the typical lipocalin fold characterised by an eight-stranded antiparallel β-barrel that encloses an internal ligand-binding pocket. The crystal structures of two different complexes provide a detailed picture of the ligand-binding determinants of apoM. Additional fatty acid- and lipid-binding studies with apoM and the mutants apoMW47F and apoMW100F showed that sphingosine-1-phosphate is able to displace the bound fatty acids and efficiently quenched the intrinsic fluorescence with an IC50 of 0.90 μM. Whereas the fatty acids bound in the crystal structure could be a mere consequence of recombinant protein production, the observed binding of sphingosine-1-phosphate might provide a key to a better understanding of the physiological function of apoM.  相似文献   
5.
Steroidal aryliminium salts were prepared from D-seco-pregnene aldehyde 2b, and their BF3.OEt2-catalyzed reactions were studied. The nature of the substituent R1 in the anilines 3-6 essentially influenced the chemoselectivity. Using unsubstituted 3, 4-methoxy- (4) or 4-bromoaniline (5), different tetrahydroquinoline derivatives 7a-13a via intramolecular hetero Diels-Alder reaction were formed. In the case of 4-nitroaniline (6) the N-arylamino-D-homopregnane (14a) were also obtained. We assume, that an intramolecular Prins reaction led to this type of fluoro-D-homosteroid. The main products represent a new class of tetrahydroquinolino-androstenes.  相似文献   
6.
PML nuclear bodies (PML-NBs) are enigmatic structures of the cell nucleus that act as key mediators of intrinsic immunity against viral pathogens. PML itself is a member of the E3-ligase TRIM family of proteins that regulates a variety of innate immune signaling pathways. Consequently, viruses have evolved effector proteins to modify PML-NBs; however, little is known concerning structure-function relationships of viral antagonists. The herpesvirus human cytomegalovirus (HCMV) expresses the abundant immediate-early protein IE1 that colocalizes with PML-NBs and induces their dispersal, which correlates with the antagonization of NB-mediated intrinsic immunity. Here, we delineate the molecular basis for this antagonization by presenting the first crystal structure for the evolutionary conserved primate cytomegalovirus IE1 proteins. We show that IE1 consists of a globular core (IE1CORE) flanked by intrinsically disordered regions. The 2.3 Å crystal structure of IE1CORE displays an all α-helical, femur-shaped fold, which lacks overall fold similarity with known protein structures, but shares secondary structure features recently observed in the coiled-coil domain of TRIM proteins. Yeast two-hybrid and coimmunoprecipitation experiments demonstrate that IE1CORE binds efficiently to the TRIM family member PML, and is able to induce PML deSUMOylation. Intriguingly, this results in the release of NB-associated proteins into the nucleoplasm, but not of PML itself. Importantly, we show that PML deSUMOylation by IE1CORE is sufficient to antagonize PML-NB-instituted intrinsic immunity. Moreover, co-immunoprecipitation experiments demonstrate that IE1CORE binds via the coiled-coil domain to PML and also interacts with TRIM5α We propose that IE1CORE sequesters PML and possibly other TRIM family members via structural mimicry using an extended binding surface formed by the coiled-coil region. This mode of interaction might render the antagonizing activity less susceptible to mutational escape.  相似文献   
7.
Today's proteome is the result of innumerous gene duplication, mutagenesis, drift and selection processes. Whereas random mutagenesis introduces predominantly only gradual changes in protein function, a case can be made that an abrupt switch in function caused by single amino acid substitutions will not only considerably further evolution but might constitute a prerequisite for the appearance of novel functionalities for which no promiscuous protein intermediates can be envisaged. Recently, tetracycline repressor (TetR) variants were identified in which binding of tetracycline triggers the repressor to associate with and not to dissociate from the operator DNA as in wild-type TetR. We investigated the origin of this activity reversal by limited proteolysis, CD spectroscopy and X-ray crystallography. We show that the TetR mutant Leu17Gly switches its function via a disorder-order mechanism that differs completely from the allosteric mechanism of wild-type TetR. Our study emphasizes how single point mutations can engender unexpected leaps in protein function thus enabling the appearance of new functionalities in proteins without the need for promiscuous intermediates.  相似文献   
8.
The protein disulfide isomerase-related protein ERp29 is a putative chaperone involved in processing and secretion of secretory proteins. Until now, however, both the structure and the exact nature of interacting substrates remained unclear. We provide for the first time a crystal structure of human ERp29, refined to 2.9 Å, and show that the protein has considerable structural homology to its Drosophila homolog Wind. We show that ERp29 binds directly not only to thyroglobulin and thyroglobulin-derived peptides in vitro but also to the Wind client protein Pipe and Pipe-derived peptides, although it fails to process Pipe in vivo. A monomeric mutant of ERp29 and a D domain mutant in which the second peptide binding site is inactivated also bind protein substrates, indicating that the monomeric thioredoxin domain is sufficient for client protein binding. Indeed, the b domains of ERp29 or Wind, expressed alone, are sufficient for binding proteins and peptides. Interacting peptides have in common two or more aromatic residues, with stronger binding for sequences with overall basic character. Thus, the data allow a view of the two putative peptide binding sites of ERp29 and indicate that the apparent, different processing activity of the human and Drosophila proteins in vivo does not stem from differences in peptide binding properties.  相似文献   
9.
10.
Nuclear replication of cytomegalovirus relies on elaborate mechanisms of nucleocytoplasmic egress of viral particles. Thus, the role of two essential and conserved viral nuclear egress proteins, pUL50 and pUL53, is pivotal. pUL50 and pUL53 heterodimerize and form a core nuclear egress complex (NEC), which is anchored to the inner nuclear membrane and provides a scaffold for the assembly of a multimeric viral-cellular NEC. Here, we report the crystal structure of the pUL50-pUL53 heterodimer (amino acids 1–175 and 50–292, respectively) at 2.44 Å resolution. Both proteins adopt a globular fold with mixed α and β secondary structure elements. pUL53-specific features include a zinc-binding site and a hook-like N-terminal extension, the latter representing a hallmark element of the pUL50-pUL53 interaction. The hook-like extension (amino acids 59–87) embraces pUL50 and contributes 1510 Å2 to the total interface area (1880 Å2). The pUL50 structure overall resembles the recently published NMR structure of the murine cytomegalovirus homolog pM50 but reveals a considerable repositioning of the very C-terminal α-helix of pUL50 upon pUL53 binding. pUL53 shows structural resemblance with the GHKL domain of bacterial sensory histidine kinases. A close examination of the crystal structure indicates partial assembly of pUL50-pUL53 heterodimers to hexameric ring-like structures possibly providing additional scaffolding opportunities for NEC. In combination, the structural information on pUL50-pUL53 considerably improves our understanding of the mechanism of HCMV nuclear egress. It may also accelerate the validation of the NEC as a unique target for developing a novel type of antiviral drug and improved options of broad-spectrum antiherpesviral therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号