首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   15篇
  152篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   6篇
  2019年   8篇
  2018年   5篇
  2017年   4篇
  2016年   10篇
  2015年   10篇
  2014年   5篇
  2013年   3篇
  2012年   7篇
  2011年   6篇
  2010年   5篇
  2009年   2篇
  2008年   6篇
  2007年   3篇
  2006年   9篇
  2005年   6篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   7篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   5篇
  1989年   4篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
1.
The in vitro activity of several new imidazoles, cloconazole, sulconazole, butoconazole, isoconazole and fenticonazole, were compared with those of amphothericin B, flucytosine, and three azoles: econazole, miconazole and ketoconazole against isolates of pathogenic Candida. A total of 186 clinical isolates of 10 species of the genus Candida and two culture collection strains were tested by an agar-dilution technique. Isoconazole was the most active azole, followed by butoconazole and sulconazole. Differences between some of the species in their susceptibility to the antifungal agents were noted. Sulconazole and cloconazole had the highest activity in vitro against 106 isolates of C. albicans. Butoconazole and isoconazole were also very active against isolates of C. albicans, and were the most active azole compounds against 80 isolates of Candida spp.  相似文献   
2.
The effect of choline deficiency on the de novo pathway for phosphatidylcholine (PC) synthesis in the lung was investigated in rats fed a washed soy protein (lipotrophic) diet deficient in choline and methionine for 2-3 wk. Lungs from lipotrophic rats showed a decreased content of choline and choline-phosphate (P less than 0.05) compared with control but no change in content of cytidine 5'-diphosphocholine or PC. Isolated perfused lungs from lipotrophic rats were evaluated for choline and fatty acid utilization for PC synthesis. Lipotrophic lungs perfused with 5 microM [14C-methyl]-choline chloride showed increased incorporation into PC while there was no significant effect at saturating levels of choline (100 microM). There was increased incorporation of [1-14C]-palmitic acid into PC and diglyceride and increased incorporation of D-[U-14C]glucose into fatty acids of PC. Increased choline and glucose incorporation was not due to alteration of intracellular specific activity of these substrates. This study indicates the utilization of choline and fatty acid for PC synthesis is stimulated as a result of choline deficiency while lung CDP-choline concentration is maintained, possibly through regulation of choline phosphate cytidyl transferase activity. These mechanisms compensate for decreased choline availability to maintain the PC content of lungs.  相似文献   
3.
A novel experimental method was developed which allows the determination of the threshold concentration of sucrose by use of a linear sucrose gradient in water. With this method a continuous tasting of the test-liquid is possible. A panel of 15 persons experienced in taste-testing was used. Three gradients of different steepness were applied: 0 to 1.5% (w/w) sucrose in 2 min (I), 3 min (II) and 4 min (III). The results of the new method were compared with those of the standard method (DIN). With gradients I and II we found values which were significantly higher than those of the standard method (I: 0.49% (w/w); II: 0.46% (w/w); DIN: 0.31% (w/w)), whereas with gradient III the same threshold value was found as with the DIN-Method (III: 0.32% (w/w)).  相似文献   
4.
5.
6.
应用GLC/MS联用仪对室内培养的钝顶螺旋藻(Spirulina platensis (Nordstedt) Geitler)、极大螺旋藻(S.maxima (Stechell & Gardiner) Geitler)和盐泽螺旋藻(S.subsalsa Oerst)的甾醇成分进行了测定。从钝顶螺旋藻和盐泽螺旋藻中共分出11个相同的甾醇组分:胆甾醇、胆甾烷醇、芸苔甾醇、麦角甾醇、海绵甾醇、菜子甾醇、豆甾醇、24-乙基-Δ~(5,7,22)-胆甾醇、β-谷甾醇、异岩藻甾醇和4α,23,24-三甲基Δ~(5,22)-胆甾醇;从极大螺旋藻中只分离出8个甾醇组分。其中胆甾醇含量最高。4α,23,24-三甲基-Δ~(5,22)-胆甾醇为蓝藻中首次报导。  相似文献   
7.
Oxygen-dependent reperfusion injury in the isolated rat lung.   总被引:3,自引:0,他引:3  
To further define the relationship between oxygen dependence of lung injury during ischemia and ischemia-reperfusion, we used the isolated, perfused, and ventilated rat lung model, so that oxygenation and perfusion could be separated. During ischemia, lungs were ventilated with various oxygen concentrations and then ventilated with 95% oxygen during the 60-min reperfusion period. Other lungs were ventilated with 0% oxygen (nitrogen) during ischemia, and the reperfusion phase oxygen concentration was varied. Tissue and perfusate lipid peroxidation products (thiobarbituric acid-reactive substances and conjugated dienes), dry-to-wet weight ratio, and lactate dehydrogenase were measured as indexes of lung damage. In addition, electron microscopy of some lungs was performed. Results demonstrate an oxygen dependence of lipid peroxidation in both the ischemic and reperfusion phases, but lipid peroxidation is severalfold greater in the reperfusion than in the ischemic phase. Products of lipid peroxidation closely correlate with indexes of lung injury (dry-to-wet weight ratio, lactate dehydrogenase, and electron microscopy).  相似文献   
8.
The flexibility and self-healing properties of animal cell surface membranes are well known. These properties have been best exploited in various micrurgical studies on living cells (2, 3), especially in amoebae (7, 20). During nuclear transplantation in amoebae, the hole in the membrane through which a nucleus passes can have a diameter of 20-30 μm, and yet such holes are quickly sealed, although some cytoplasm usually escapes during the transfer. While enucleating amoebae in previous studies, we found that if a very small portion of a nucleus was pushed through the membrane and exposed to the external medium, the amoeba expelled such a nucleus on its own accord. When this happened, a new membrane appeared to form around the embedded portion of the nucleus and no visible loss of cytoplasm occurred during nuclear extrusion. In the present study, we examined amoebae that were at different stages of expelling partially exposed nuclei, to follow the sequence of events during the apparent new membrane formation. Unexpectedly, we found that a new membrane is not formed around the nucleus from inside but a hole is sealed primarily by a constriction of the existing membrane, and that cytoplasmic filaments are responsible for the prevention of the loss of cytoplasm.  相似文献   
9.
The peptidoglycan (PG) layer is an intricate and dynamic component of the bacterial cell wall, which requires a constant balance between its synthesis and hydrolysis. FtsEX complex present on the inner membrane is shown to transduce signals to induce PG hydrolysis. FtsE has sequence similarity with the nucleotide-binding domains (NBDs) of ABC transporters. The NBDs in most of the ABC transporters couple ATP hydrolysis to transport molecules inside or outside the cell. Also, this reaction cycle is driven by the dimerization of NBDs. Though extensive studies have been carried out on the Escherchia coli FtsEX complex, it remains elusive regarding how FtsEX complex helps in signal transduction or transportation of molecules. Also, very little is known about the biochemical properties and ATPase activities of FtsE. Because of its strong interaction with the membrane-bound protein FtsX, FtsE stays insoluble upon overexpression in E. coli, and thus, most studies on E. coli FtsE (FtsEEc) in the past have used refolded FtsE. Here in the present paper, for the first time, we report the soluble expression, purification, and biochemical characterization of FtsE from E. coli. The purified soluble FtsE exhibits high thermal stability, exhibits ATPase activity and has more than one ATP-binding site. We have also demonstrated a direct interaction between FtsE and the cytoplasmic loop of FtsX. Together, our findings suggest that during bacterial division, the ATPase cycle of FtsE and its interaction with the FtsX cytoplasmic loop may help to regulate the PG hydrolysis at the mid cell.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号