首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   29篇
  2016年   3篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   3篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1988年   1篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   3篇
  1975年   4篇
  1974年   5篇
  1973年   5篇
  1972年   3篇
  1971年   6篇
  1970年   5篇
  1969年   10篇
  1968年   5篇
  1967年   4篇
  1966年   6篇
  1965年   3篇
  1964年   1篇
  1963年   3篇
  1962年   1篇
  1961年   1篇
  1959年   1篇
  1933年   1篇
排序方式: 共有116条查询结果,搜索用时 15 毫秒
1.
2.
Synthesis of heme, measured by incorporation of iron-59, and of bacteriochlorophyll was studied with wild-type and mutant strains of Rhodopseudomonas spheroides. The wild type formed heme from glycine and succinate at one-fortieth the rate of bacteriochlorophyll under anaerobic-light conditions. Added delta-aminolevulinate stimulated heme synthesis 10-fold without increasing bacteriochlorophyll production. Heme synthesis from glycine and succinate was increased when the magnesium branch of the biosynthetic path was curtailed by mutation or by p-fluorophenylalanine or 8-azaguanine. Synthesis of bacteriochlorophyll by the wild type from glycine and succinate stopped immediately after addition of puromycin, but heme production continued for a period. Porphyrins and other precursors did not appear upon addition of puromycin alone, but simultaneous addition of o-phenanthroline resulted in the accumulation of coproporphyrin. Production of this porphyrin by a mutant strain with impaired ability to form heme was unaffected by puromycin. Heme synthesis from glycine and succinate or from delta-aminolevulinate was decreased by limitation of methionine; it is suggested that coproporphyrin accumulation from glycine and succinate under conditions of methionine deficiency results from relief of feedback inhibition of delta-aminolevulinate synthase by heme. The development of delta-aminolevulinate synthase activity in response to low aeration is prevented by addition of delta-aminolevulinate. This repressive action of the latter is abolished when its conversion to heme is impeded by mutation or by methionine deficiency. It is suggested that heme, the quantitatively minor end product of the branched biosynthetic pathway, may regulate the flow of common intermediates when utilization of protoporphyrin by the magnesium branch is diminished. This regulation may be exerted by feedback inhibition of delta-aminolevulinate synthase and also by repression of enzyme formation.  相似文献   
3.
1. Ferrochelatase was demonstrated in the chloroplasts and proplastids isolated from the primary leaves of beans (a dicotyledon) and oats (a monocotyledon). It was also detected in chloroplasts from etiolated bean seedlings made green by illumination before being harvested. The specific activities of the three types of bean organelles are similar, as are the specific activities of the oat proplastids and chloroplasts. 2. Chloroplasts from young spinach leaves also contain ferrochelatase; these chloroplasts were tested for their ability to form magnesium tetrapyrroles and found unable to catalyse the insertion of Mg(2+) into mesoporphyrin IX. 3. Ferrochelatase was also detected in potato tuber mitochondria. 4. Ferrochelatase activity in these plant preparations is much less stable on storage than similar preparations from bacteria and animal tissues. 5. Temperature affects the activities of spinach chloroplast ferrochelatase and rat liver ferrochelatase differently. Activity of the chloroplast enzyme increases as the temperature rises from 20.6 degrees to 26 degrees , but becomes increasingly inactivated as the temperature rises further to 38 degrees . The initial velocity of the mammalian enzyme, however, increases as the temperature rises from 25.8 degrees to 65 degrees , but the enzyme is inactivated after several minutes at 65 degrees .  相似文献   
4.
5.
6.
The resiliency of rats during early postnatal development to CCl4 or to an interactive hepatotoxicity of chlordecone (CD) + CCl4 has been shown to be due to an efficient stimulation of tissue repair. The objective of the current study was to investigate if this is due to efficient expression of transforming growth factor-α (TGF-α) and proto-oncogenes. Postnatally developing (20 day old) and adult (60 day old) male Sprague–Dawley rats were challenged with a single low dose of CCl4 (100 μL/kg, ip) or corn oil. Liver samples were collected during a time course (0–96 h) after the administration of CCl4 and used to examine TGF-α and early (c-fos) and late (H-ras and K-ras) proto-oncogenes mRNA expressions. Significant increases in TGF-α, H-ras, and K-ras gene expressions were evident as early as 12 hours after CCl4 and peaked between 24 and 48 hours in an age-dependent manner as detected by slot-blot analysis. Results of the study revealed three- and twofold increases in TGF-α gene expression in 20 and 60 day old rats, respectively, after CCl4. There were 3.5- and 2.5-fold increases in H-ras and 4.4- and 3.4-fold increases in K-ras in 20 and 60 day old rats, respectively. In contrast, a 10-fold increase in c-fos mRNA expression was evident in 20 day old rats 1 hour after CCl4 treatment, returning to the baseline value by 3 hours, whereas in 60 day old rats, this increase was less than twofold. The overall findings of this study indicate that TGF-α and the early and late proto-oncogene mRNA expressions were enhanced in an age- and time-dependent manner in response to a low dose of CCl4. These results further strengthen the view that the remarkable resiliency of rats to hepatotoxicants during early postnatal development is due to substantial increases in stimulation of hepatocellular regeneration and tissue repair mechanisms, leading to regression of liver injury and recovery. © 1996 John Wiley & Sons, Inc.  相似文献   
7.
Membranes from Spirillum itersonii reduce ferric iron to ferrous iron with reduced nicotinamide adenine dinucleotide or succinate as a source of reductant. Iron reduction was measured spectrophotometrically at 562 nm using ferrozine, which chelates ferrous iron specifically. Reduced nicotinamide adenine dinucleotide or succinate was also effective as a source of iron. The effects of respiratory inhibitors suggested that reduction of iron occurs at one or more sites on the respiratory chain before cytochrome c. Reduction of iron and synthesis of protoheme with the physiological reductants were also observed with crude extracts of other bacteria, including Rhodopseudomonas spheroides, Rhodopseudomonas capsulata, Paracoccus denitrificans, and Escherichia coli. The effect of oxygen upon reduction of iron and formation of protoheme was examined with membranes from S. itersonii, using succinate as a source of reductant. Both systems were inhibited by oxygen, but this effect was completely reversed by addition of antimycin A. We conclude that reduced components of the respiratory chain serve as reductants for ferric iron, but with oxygen present they are oxidized preferentially by the successive members of the chain. This could be a mechanism for regulating synthesis of heme and cytochrome by oxygen.  相似文献   
8.
Maximum growth of Campylobacter fetus subsp. jejuni, strain C-61, occurred when the cultures were incubated with shaking in atmospheres containing approximately 30% hydrogen, 5% oxygen, and 10% CO2. Suspensions of cells grown under these conditions consumed oxygen with formate as the substrate in the presence of 0.33 mM cyanide, which completely inhibited respiration with ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine and with lactate. Spectroscopic evidence with intact cells suggested that a form of cytochrome c, reducible with formate but not with lactate or ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine, can be reoxidized by a cyanide-insensitive system. Analysis of membranes from the cells showed high- and low-potential forms of cytochrome c, cytochrome b, and various enzymes, including hydrogenase, formate dehydrogenase, and fumarate reductase. The predominant carbon monoxide-binding pigment appeared to be a form of cytochrome c, but the spectra also showed evidence of cytochrome o. The membrane cytochromes were reduced by hydrogen in the presence of 2-heptyl-4-hydroxyquinoline-N-oxide at concentrations which prevented the reduction of cytochrome c with succinate as the electron donor. Reoxidation of the substrate-reduced cytochromes by oxygen was apparently mediated by cyanide-sensitive and cyanide-insensitive systems. The membranes also had hydrogen-fumarate oxidoreductase activity mediated by cytochrome b. We conclude that C. fetus jejuni has high- and low-potential forms of cytochrome which are associated with a complex terminal oxidase system.  相似文献   
9.
Rhodopseudomonas sphaeroides has a pyridine nucleotide-independent L-lactate dehydrogenase associated with the membrane fraction of cells grown either aerobically or phototrophically. The dehydrogenase is present in cells grown on a variety of carbon sources, but at levels less than 20% of that found in cells grown with DL-lactate. The dehydrogenase has been purified 45-fold from membranes of strain L-57, a non-photosynthetic mutant, by steps involving solubilization with lauryl dimethylamine oxide and three anion-exchange chromatography steps. The purified enzyme was specific for the L-isomer of lactate. The Km of the purified enzyme for L-lactate is 1.4 mM, whereas that of the membrane-associated enzyme is 0.5 mM. The enzyme activity was inhibited competitively by D-lactate and non-competitively by oxalate and oxamate. Quinacrine, a flavin analog, also inhibited the activity. The inducible enzyme may serve as a marker of membrane protein in studies of membrane development.  相似文献   
10.
An experimental system has been devised for induction of nitrate reductase in suspensions of wild type Paracoccus denitrificans incubated with limited aeration in the presence of azide, nitrate or nitrite. Azide promoted maximum synthesis of enzyme, accompanied by formation of excess b-type cytochrome; the level of enzyme attained with nitrate was less and c-type cytochrome predominated in the membrane. The nitrate reductase was solubilized with deoxycholate from membranes of azide-induced cells and was identified as a major polypeptide M r =150,000 by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Mutants strains lacking nitrate reductase activity were isolated on the basis of resistance to chlorate and mutant M-1 was examined in detail. When incubated in the cell suspension system M-1 formed a membrane protein M r =150,000 similar to that attributed to nitrate reductase in the wild type. Maximum formation of the protein by M-1 occurred without inducer and it was accompanied by synthesis of excess b-type cytochrome. The observations with wild type and M-1 indicate that nitrate reductase protein and b-type cytochrome are coregulated and that the active enzyme has a role in regulating its own synthesis.Non-standard Abbreviations SDS sodium dodecyl sulphate - PAGE polyacrylamide gel electrophoresis - DOC sodlum deoxycholate  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号