首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   6篇
  2021年   2篇
  2020年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1985年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1968年   2篇
  1967年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
Cholera toxin (CT) is a strong systemic and mucosal adjuvant that greatly enhances IgG and IgA immune responses. We investigated whether CT potentiates Ag presentation by macrophages as a possible mechanism underlying its adjuvant function. This was tested by preculturing APC in CT and analyzing the effect of CT treatment on the capacity to trigger 1) an allogeneic proliferative response of normal mesenteric lymph node T cells (H-2b) to the macrophage cell line P388D1 (H-2d) or 2) an Ag-specific proliferative response of D10.G4.1 clonal T cells in co-culture with normal macrophages and Ag. Pretreatment of APC, normal peritoneal macrophages or the P388D1 cells, with CT strongly enhanced Ag- and allogen-specific T cell proliferation. Also P388D1 APC treated with CT and then formalin-fixed demonstrated enhanced ability to stimulate T cell proliferation as compared to cells not exposed to CT, suggesting that the effect of CT on APC might be to enhance expression of a cell-associated factor. Flow microfluorimetry analysis of P388D1 cells cultured in CT-containing medium failed to detect an increase in class II MHC-Ag expression as compared to that found on cells not cultured in CT. In contrast, both soluble and cell-associated IL-1 formation was increased several-fold by CT, but with different CT dose requirements. A total of 10 to 100 times more CT were required for elevating the soluble IL-1 as compared to the cell associated IL-1, which was increased by as little as 1 ng/ml of CT. The soluble and cell-associated IL-1 activity induced by CT was abrogated by a polyclonal antiserum to IL-1-alpha. Similarly, the potentiating effect of CT on the ability of P388D1 APC to trigger alloreactive T cell proliferation was also blocked completely by the addition of the anti-IL-1-alpha antibody to the test system. This is the first study to demonstrate that CT potentiates Ag presentation. The mechanism for this effect probably involves induction of IL-1 production and in particular of a cell-associated form of IL-1 (IL-1-alpha). Potentiation of APC function might be important for the adjuvant action of CT on the immune response in vivo.  相似文献   
2.
Lysates from herpes simplex virus type 1-infected cells were subjected to affinity chromatography on soybean and Helix pomatia lectins. One of the virus-specified glycoproteins, probably the herpes simplex virus type 1-specific gC glycoprotein, bound to the lectins and was eluted with N-acetylgalactosamine. The affinity chromatography permitted a high degree of purification of the type-specific glycoprotein with respect to both host cell components and other viral glycoproteins. The lectin affinity pattern of this glycoprotein indicates the presence of a terminal alpha-N-acetylgalactosamine in an oligosaccharide, a finding not reported previously for glycoproteins of enveloped viruses.  相似文献   
3.
4.
5.
In this study, we show that costimulation required for mucosal IgA responses is strikingly different from that needed for systemic responses, including serum IgA. Following oral immunization with cholera toxin (CT) adjuvant we found that whereas CTLA4-H1 transgenic mice largely failed to respond, CD28-/- mice developed near normal gut mucosal IgA responses but poor serum Ab responses. The local IgA response was functional in that strong antitoxic protection developed in CT-immunized CD28-/- mice. This was in spite of the fact that no germinal centers (GC) were observed in the Peyer's patches, spleen, or other peripheral lymph nodes. Moreover, significant somatic hypermutation was found in isolated IgA plasma cells from gut lamina propria of CD28-/- mice. Thus, differentiation to functional gut mucosal IgA responses against T cell-dependent Ags does not require signaling through CD28 and can be independent of GC formations and isotype-switching in Peyer's patches. By contrast, serum IgA responses, similar to IgG-responses, are dependent on GC and CD28. However, both local and systemic responses are impaired in CTLA4-Hgamma1 transgenic mice, indicating that mucosal IgA responses are dependent on the B7-family ligands, but require signaling via CTLA4 or more likely a third related receptor. Therefore, T-B cell interactions leading to mucosal as opposed to serum IgA responses are uniquely regulated and appear to represent separate events. Although CT is known to strongly up-regulate B7-molecules, we have demonstrated that it acts as a potent mucosal adjuvant in the absence of CD28, suggesting that alternative costimulatory pathways are involved.  相似文献   
6.
We recently developed a novel immunomodulating gene fusion protein, CTA1-DD, that combines the ADP-ribosylating ability of cholera toxin (CT) with a dimer of an Ig-binding fragment, D, of Staphylococcus aureus protein A. The CTA1-DD adjuvant was found to be nontoxic and greatly augmented T cell-dependent responses to soluble protein Ags after systemic as well as mucosal immunizations. Here we show that CTA1-DD does not appear to form immune complexes or bind to soluble Ig following injections, but, rather, it binds directly to B cells of all isotypes, including naive IgD+ cells. No binding was observed to macrophages or dendritic cells. Immunizations in FcepsilonR (common FcRgamma-chain)- and FcgammaRII-deficient mice demonstrated that CTA1-DD exerted unaltered enhancing effects, indicating that FcgammaR-expressing cells are not required for the adjuvant function. Whereas CT failed to augment Ab responses to high m.w. dextran B512 in athymic mice, CTA1-DD was highly efficient, demonstrating that T cell-independent responses were also enhanced by this adjuvant. In normal mice both CT and CTA1-DD, but not the enzymatically inactive CTA1-R7K-DD mutant, were efficient enhancers of T cell-dependent as well as T cell-independent responses, and both promoted germinal center formation following immunizations. Although CT augmented apoptosis in Ag receptor-activated B cells, CTA1-DD strongly counteracted apoptosis by inducing Bcl-2 in a dose-dependent manner, a mechanism that was independent of the CD19 coreceptor. However, in the presence of CD40 stimulation, apoptosis was low and unaffected by CT, suggesting that the adjuvant effect of CT is dependent on the presence of activated CD40 ligand-expressing T cells.  相似文献   
7.
In recent years, Abs have been considered a correlate rather than an effector of resistance against Helicobacter pylori infection. However, it is still poorly understood to what extent Ab production correlates with gastric immunopathology. Here we report that Abs not only are dispensable for protection, but they are detrimental to elimination of the bacteria and appear to impair gastric inflammatory responses. We found that the initial colonization with H. pylori bacteria was normal in the B cell-deficient (microMT) mice, whereas at later times (>8 wk) most of the bacteria were cleared, concomitant with the development of severe gastritis. In contrast, wild-type (WT) mice exhibited extensive bacterial colonization and only mild gastric inflammation, even at 16 wk after inoculation. Oral immunizations with H. pylori lysate and cholera toxin adjuvant stimulated comparable levels of protection in microMT and WT mice. The level of protection in both strains correlated well with the severity of the postimmunization gastritis. Thus, T cells were responsible for the gastritis, whereas Abs, including potentially host cell cross-reactive Abs, were not involved in causing the gastritis. The T cells in micro MT and WT mice produced high and comparable levels of IFN-gamma to recall Ag at 2 and after 8 wk, whereas IL-4 was detected after 8 wk only, indicating that Th1 activity dominated the early phase of protection, whereas later a mixed Th1 and Th2 activity was seen.  相似文献   
8.
Mucosally active vaccine adjuvants that will prime a full range of local and systemic immune responses against defined antigenic epitopes are much needed. Cholera toxin and lipophilic immune stimulating complexes (ISCOMS) containing Quil A can both act as adjuvants for orally administered Ags, possibly by targeting different APCs. Recently, we have been successful in separating the adjuvant and toxic effects of cholera toxin by constructing a gene fusion protein, CTA1-DD, that combines the enzymatically active CTA1-subunit with a B cell-targeting moiety, D, derived from Staphylococcus aureus protein A. Here we have extended this work by combining CTA1-DD with ISCOMS, which normally target dendritic cells and/or macrophages. ISCOMS containing a fusion protein comprising the OVA(323-339) peptide epitope linked to CTA1-DD were highly immunogenic when given in nanogram doses by the s.c., oral, or nasal routes, inducing a wide range of T cell-dependent immune responses. In contrast, ISCOMS containing the enzymatically inactive CTA1-R7K-DD mutant protein were much less effective, indicating that at least part of the activity of the combined vector requires the ADP-ribosylating property of CTA1. No toxicity was observed by any route. To our knowledge, this is the first report on the successful combination of two mechanistically different principles of adjuvant action. We conclude that rationally designed vectors consisting of CTA1-DD and ISCOMS may provide a novel strategy for the generation of potent and safe mucosal vaccines.  相似文献   
9.
10.
Rabies virus infection of cultured rat sensory neurons.   总被引:7,自引:4,他引:3       下载免费PDF全文
E Lycke  H Tsiang 《Journal of virology》1987,61(9):2733-2741
The axonal transport of rabies virus (challenge virus strain of fixed virus) was studied in differentiated rat embryonic dorsal root ganglion cells. In addition, we observed the attachment of rabies virus to neuronal extensions and virus production by infected neurons. A compartmentalized cell culture system was used, allowing infection and manipulation of neuronal extensions without exposing the neural soma to the virus. The cultures consisted of 60% large neuronal cells whose extensions exhibited neurofilament structures. Rabies virus demonstrated high binding affinity to unmyelinated neurites, as suggested by assays of virus adsorption and immunofluorescence studies. The rate of axoplasmic transport of virus was 12 to 24 mm/day, including the time required for internalization of the virus into neurites. The virus transport could be blocked by cytochalasin B, vinblastine, and colchicine, none of which negatively affected the production of virus in cells once the infection was established. It was concluded that, for the retrograde transfer of rabies virus by neurites from the periphery to the neuronal soma, the integrity of tubulin- and actin-containing structures is essential. The rat sensory neurons were characterized as permissive, moderately susceptible, but low producers of rabies virus. These neurons were capable of harboring rabies virus for long periods of time and able to release virus into the culture medium without showing any morphological alterations. The involvement of sensory neurons in rabies virus pathogenesis, both in viral transport and as a site for persistent viral infection, is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号