首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
  2023年   1篇
  2022年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  1977年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Mefenamic acid, a non-steroidal antiinflammatory drug (NSAID), directly and dose-dependently exhibits neuroprotective activity. In our study, we investigated the effects of mefenamic acid against d-serine on oxidative stress in the hippocampus, cortex and cerebellum of rats. Furthermore, the potential inflammatory and apoptotic effects of d-serine and potential protective effect of mefenamic acid were determined at mRNA and protein levels of TNF-α, IL-1β, Bcl-2 and Bax. We found that d-serine significantly increased oxidative stress, levels of inflammation- and apoptosis-related molecules in a region specific manner. Mefenamic acid treatment provided significant protection against the elevation of lipid peroxidation, protein oxidation, levels of TNF-α, IL-1β and Bax. As a conclusion, we suggest that d-serine, as a potential neurodegenerative agent, may have a pivotal role in the regulation of oxidative stress, inflammation and apoptosis; and NSAIDs, such as mefenamic acid, may assist other therapeutics in treating disorders where d-serine-induced neurotoxic mechanisms are involved in.  相似文献   
2.
Alzheimer's disease (AD) is the most common form of dementia and is characterized by the presence of senile plaques and neurofibrillary tangles, along with synaptic loss. The underlying mechanisms of AD are not clarified yet, but oxidative stress and mitochondrial dysfunction are important factors. Overactivation of poly(adenosine diphosphate ribose) polymerase‐1 (PARP‐1) enzyme has been known to cause neuroinflammation and cell death in neurodegenerative processes. The aim of the present study was to investigate the protective effects of the PARP‐1 inhibitors, 3‐aminobenzamide (3‐AB) and nicotinamide (NA), against amyloid β peptide (1–42) (Aβ(1–42))‐induced oxidative damage and mitochondrial reduction capacity on isolated synaptosomes. Rats were injected intraperitoneally with 3‐AB (30–100 mg kg?1), NA (100–500 mg kg?1) or with saline for 7 days. Synaptosomes were incubated with 10–30 μM Aβ(1–42) or saline for 6 h at 37 °C. Ex vivo Aβ(1–42) treatment significantly induced oxidative stress and mitochondrial dysfunction in synaptosomes of the saline group, while synaptosomes of 3‐AB and NA groups showed significant decreases in lipid peroxidation, reactive oxygen species production and protein oxidation. Moreover, both NA and 3‐AB were able to improve the mitochondrial reduction capacity against Aβ(1–42). These data suggest that NA and 3‐AB may have protective effects in neurodegenerative processes because of the reduced levels of oxidative stress and the improvement of mitochondrial function. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
3.
Product quality analyses are critical for developing cell line and bioprocess producing therapeutic proteins with desired critical product quality attributes. To facilitate these analyses, a high‐throughput small‐scale protein purification (SSP) is required to quickly purify many samples in parallel. Here we develop an SSP using ion exchange resins to purify a positively charged recombinant growth factor P1 in the presence of negatively charged dextran sulfate supplemented to improve the cell culture performance. The major challenge in this work is that the strong ionic interaction between P1 and dextran sulfate disrupts interaction between P1 and chromatography resins. To solve this problem, we develop a two‐step SSP using Q Sepharose Fast Flow (QFF) and SP Sepharose XL (SPXL) resins to purify P1. The overall yield of this two‐step SSP is 78%. Moreover, the SSP does not affect the critical product quality attributes. The SSP was critical for developing the cell line and process producing P1. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:516–520, 2014  相似文献   
4.
Abstract— A microsomal fraction prepared from rat dorsal spinal nerve roots accumulated 45Ca by a temperature–and ATP-dependent mechanism. Uptake, which was maximal at pH 7.2–7.4, was potentiated 4-fold by 8 m m -oxalate and was linear over a 20 min incubation period. Ca uptake was not inhibited by sodium azide or by oligomycin and only slightly by ruthenium red suggesting that it was not of mitochondrial origin. On a sucrose density gradient the microsomal fraction equilibrated at between 0.25 m - and 0.65 m -sucrose but, using a discontinuous gradient over this range, no fraction enriched in Ca-accumulating activity could be separated. The possibility is discussed that the Ca-accumulating microsomes may be derived from smooth endoplasmic reticulum.  相似文献   
5.
Excitotoxicity is a contributing factor to the pathogenesis of acute or chronic neurodegenerative disease states. Kainic acid (KA) is an excitotoxic substance and the administration of it to rodents induces seizure activity (status epilepticus, SE) and leads to neurodegeneration. In this study the effect of KA-induced excitotoxicity on the G-protein activations and the gene expression levels of the opioid/nociceptin system receptors as MOPr, KOPr, DOPr, ORL-1, and PNOC (N/OFQ) were investigated, and the regulator effect of naloxone (Nal) on the gene expressions of the opioid system receptors against KA-induced seizures in the rat hippocampus was tested. In addition, the expression levels of stress-toxicity genes were assessed in the hippocampus following KA-induced excitotoxicity in order to determine the potential genetic targets which can be helpful for neuroprotective interventions. Our results indicate that the KA-induced excitotoxicity increased the mRNA levels of MOPr, DOPr, KOPr, PNOC, and ORL-1. However, G-protein activations of MOPr, DOPr, and KOPr remained relatively unchanged while both the potency and efficacy of N/OFQ were significantly increased. The PCR array data showed that KA-induced excitotoxicity altered the expression levels of genes in the cellular stress or toxicity pathways. Our data suggests that the induction of the opioid/nociceptin system may be involved in the cellular stress response following a neurodegenerative insult and that the genes modulated by the KA-treatment in the stress-toxicity pathways may be evaluated as targets of potential neuroprotective interventions.  相似文献   
6.

OBJECTIVES:

Estrogen is one of the most crucial hormones participating in the proliferation and carcinogenesis of the prostate glands. Genetic polymorphisms in the estrogen metabolism pathway might be involved in the risk of prostate carcinoma development. We evaluated the association between genetic polymorphisms in estrogen receptor alpha (ESR1) and catechol-O-methyltransferase (COMT) genes and the risk of developing familial prostate carcinoma.

MATERIALS AND METHODS:

In this study, 34 cases with prostate carcinoma whose first-degree relatives had prostate carcinoma and 30 healthy age-matched male controls were enrolled. The genotypes of ESR1 and COMT genes were analyzed employing polymerase chain reaction-restriction fragment length polymorphism method. 34 cases with prostate carcinoma, whose first degree relatives had prostate carcinoma and 14 age-matched male controls were enrolled to analyze the genotype of these two genes.

RESULTS:

Among control patients, the ESR1 PvuII genotypes of C/C, C/T and T/T were observed in 37%, 26% and 37%, respectively, whereas the C/C, C/T and T/T genotypes were observed in 18%, 41% and 41% of case patients, respectively. Among controls, the ESR1 PvuII allele frequencies of C and T were equally observed, whereas the C and T allele frequencies were observed in 38% and 62% of patients, respectively. Among ESR1 PvuII genotypes there were not any significant difference in terms of genotype (P = 0.199) and allele (P = 0.181) frequencies. Among controls, the ESR1 XbaI genotypes of G/G, G/A and A/A were observed in 33%, 37% and 33%, respectively, whereas the G/G, G/A and A/A genotypes were observed in 12%, 47% and 41% of patients, respectively. Among controls, the ESR1 XbaI allele frequencies of A and G were observed equally, respectively, whereas the A and G frequencies were observed in 65% and 35% of patients, respectively. Among ESR1 Χ baI, there was not any significant difference in terms of genotype (P = 0.111) and allele (P = 0.093) frequencies. But the C/C genotype of the PvuII site and G/G genotype of the XbaI site in the ESR1 gene were associated significantly with the risk of developing prostate carcinoma. The G/G, G/A and A/A genotypes of the COMT gene were observed in 50%, 29% and 21% of control patients and in 53%, 21% and 26% of case patients, respectively. The A and G allele frequencies of the COMT gene were observed in 36.7%, 63.3% of control patients and in 36.8%, 63.2% of case patients, respectively. In COMT gene, there was not any significant difference in terms of genotype (P = 0.843) and allele (P = 0.991) frequencies. But the G/A genotype of the COMT gene had a weak tendency toward increased risk.

CONCLUSION:

Polymorphisms of ESR1 gene in the estrogen metabolism pathway were associated significantly with familial prostate carcinoma risk. Single nucleotide polymorphisms of low-penetrance genes are targets for understanding the genetic susceptibility of familial prostate carcinoma.  相似文献   
7.
8.
Objectives:Whole-body vibration (WBV) is applied to the sole of the foot, whereas local mechanical vibration (LMV) is applied directly to the muscle or tendon. The time required for the mechanical stimulus to reach the muscle belly is longer for WBV. Therefore, the WBV-induced muscular reflex (WBV-IMR) latency may be longer than the tonic vibration reflex (TVR) latency. The aim of this study was to determine whether the difference between WBV-IMR and TVR latencies is due to the distance between the vibration application point and the target muscle.Methods:Eight volunteers participated in this study. The soleus reflex response was recorded during WBV, LMVs, and tendon tap. LMVs were applied to the Achilles tendon and sole of the foot. The latencies were calculated using the cumulative averaging technique.Results:The latency (33.4±2.8 ms) of the soleus reflex induced by the local foot vibration was similar to the soleus TVR latency (30.9±3.2 ms) and T-reflex (32.0±2.4 ms) but significantly shorter than the latency of the soleus WBV-IMR (42.3±3.4 ms) (F(3,21)=27.46, p=0.0001, partial η2=0.797).Conclusions:The present study points out that the neuronal circuitries of TVR and WBV-IMR are different.  相似文献   
9.
Liquidambar orientalis Mill., commonly called the Anatolian sweetgum or Sigla tree, is endemic to southwestern Turkey. It has been historically significant in traditional medicine. In our research, we delved into the therapeutic attributes of its oil, emphasizing its antioxidant, antimicrobial, and antitumor properties. The primary chemical constituent of the gum is styrene, accounting for 78.5 %. The gum demonstrated antioxidant capabilities in several assays, including in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), cupric reducing antioxidant capacity (CUPRAC) and ferric reducing antioxidant power (FRAP). It displayed bactericidal actions against various gram-positive bacteria, such as Staphylococcus aureus, and gram-negative strains, including Escherichia coli. Additionally, the oil showcased potent antitumor effects against breast (MDA-MB-231), lung (A549), and prostate (PC3) cancer cell lines. These effects were found to be both time- and dose-dependent. L. orientalis Mill. oil showed the best antitumor activity against breast, lung, and prostate cancer cell lines after the 24 h and 48 h treatment. Its oil might induce autophagy in the PC3 prostate cancer cell line, whereas its cytotoxicity against MDA-MB-231 and A549 cancer cell lines might not be correlated with autophagy or apoptosis pathways. In conclusion, the oil from the Sigla tree offers promising therapeutic potential and warrants further exploration.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号