首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2014年   1篇
  2013年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Thiolated pyrrolidinyl peptide nucleic acids (HS-PNAs) bearing d-prolyl-2-aminocyclopentanecarboxylic acid (ACPC) backbones with different lengths and types of thiol modifiers were synthesized and then characterized by MALDI–TOF mass spectrometry. These HS-PNAs were immobilized on gold-coated glass by self-assembled monolayer (SAM) formation via S atom linkage for the detection of DNA hybridization using surface plasmon resonance (SPR). The amount and the stability of the immobilized HS-PNAs, as well as the effects of spacer and blocking thiol on DNA hybridization efficiency, were determined. SPR results indicated that the hybridization efficiency was enhanced when the distance between the PNA portion and the thiol terminal was increased and/or when blocking thiol was used following the HS-PNA immobilization. The immobilized HS-PNA could discriminate between fully complementary DNA from one or two base mismatched DNA with a relatively high degree of mismatch discrimination (>45%) in PBS buffer at 25 °C. The lowest DNA concentration at which reliable discrimination between fully complementary and single mismatched DNA could still occur was at about 0.2 μM, which is equivalent to 10 pmol of DNA. This research demonstrates that using these novel thiolated PNAs in combination with the SPR technique offers a direct, rapid and non-label based method that could potentially be applied for the analysis of genomic or PCR-amplified DNA in the future.  相似文献   
2.
An efficient in vitro method for multiple shoot bud induction and regeneration has been developed in Artemisia annua L. using leaf and stem explants in various concentrations and combinations of plant growth regulators to evaluate the frequency of regeneration. The sources of explants as well as plant growth regulators in the medium were found to influence the multiple shoot induction. The result shows that the stem segment cultured on Murashige and Skoog (MS) medium supplemented with 0.1 mg/l thidiazuron (TDZ) gave a perfect shoot formation (100%) and good shoot multiplication (57 shoots/explant) after 2 weeks of culture. Healthy regenerated shoots were elongated and rooted in MS medium without hormones. The artemisinin content in plants regenerated from stem explants using 0.1 mg/l TDZ was (3.36 +/- 0.36) microg/mg dry weight and two-fold higher than that of in vitro grown plants of the same age [(1.73 -/+ 0.23) microg/mg DW]. This system exhibited a potential for a rapid propagation of shoots from the stem explant and makes it possible to develop a clonal propagation of A. annua.  相似文献   
3.
Artemisinin production by hairy roots of Artemisia annua L. was increased 6-fold to 1.8 μg mg−1 dry wt over 6 days by adding 150 mg chitosan l−1. The increase was dose-dependent. Similar treatment of hairy roots with methyl jasmonate (0.2 mM) or yeast extract (2 mg ml−1) increased artemisinin production to 1.5 and 0.9 μg mg−1 dry wt, respectively.  相似文献   
4.

Background

Human epidermal growth factor receptor 2 (HER2) has an important role in cancer aggressiveness and poor prognosis. HER2 has been used as a drug target for cancers. In particular, to effectively treat HER2-positive cancer, small molecule inhibitors were developed to target HER2 kinase. Knowing that curcumin has been used as food to inhibit cancer activity, this study evaluated the efficacy of natural curcumins and curcumin analogs as HER2 inhibitors using in vitro and in silico studies. The curcumin analogs considered in this study composed of 4 groups classified by their core structure, β-diketone, monoketone, pyrazole, and isoxazole.

Results

In the present study, both computational and experimental studies were performed. The specificity of curcumin analogs selected from the docked results was examined against human breast cancer cell lines. The screened curcumin compounds were then subjected to molecular dynamics simulation study. By modifying curcumin analogs, we found that protein-ligand affinity increases. The benzene ring with a hydroxyl group could enhance affinity by forming hydrophobic interactions and the hydrogen bond with the hydrophobic pocket. Hydroxyl, carbonyl or methoxy group also formed hydrogen bonds with residues in the adenine pocket and sugar pocket of HER2-TK. These modifications could suggest the new drug design for potentially effective HER2-TK inhibitors. Two outstanding compounds, bisdemethylcurcumin (AS-KTC006) and 3,5-bis((E)-3,4-dimethoxystyryl)isoxazole (AS-KTC021 ),were well oriented in the binding pocket almost in the simulation time, 30 ns. This evidence confirmed the results of cell-based assays and the docking studies. They possessed more distinguished interactions than known HER2-TK inhibitors, considering them as a promising drug in the near future.

Conclusions

The series of curcumin compounds were screened using a computational molecular docking and followed by human breast cancer cell lines assay. Both AS-KTC006 and AS-KTC021 could inhibit breast cancer cell lines though inhibiting of HER2-TK. The intermolecular interactions were confirmed by molecular dynamics simulation studies. This information would explore more understanding of curcuminoid structures and HER2-TK.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-261) contains supplementary material, which is available to authorized users.  相似文献   
5.
Serine protease inhibitor Kazal type 1 (SPINK1) plays an important role in protecting the pancreas against premature trypsinogen activation that causes pancreatitis. Various mutations in the SPINK1 gene were shown to be associated with patients with pancreatitis. Recent transfection studies identified intracellular folding defects, probably caused by mutation induced misfolding of D50E and Y54H mutations, as a common mechanism that reduces SPINK1 secretion and as a possible novel mechanism of SPINK1 deficiency associated with chronic pancreatitis. Using molecular dynamics, we investigated the effects of D50E and Y54H mutations on SPINK1 dynamics and conformation at 300 K. We found that the structures of D50E and Y54H mutants were less stable than and were distorted from those of the wild type, as indicated by the RMSD plots, RMSF plots and DSSP series. Specifically, unwinding of the top of helices (the main secondary structures) and the distortion of the loops above the helices were observed. It may be possible that this distorted protein structure may be recognized as “non-native” by members of the chaperone family; it may be further retained and targeted for degradation, leading to SPINK1 secretion reduction and subsequently pancreatitis in patients as Király et al. (Gut 56:1433, 2007) proposed.  相似文献   
6.
Human thiopurine S-methyltransferase (TPMT) is an essential protein in 6-mercaptopurine (6MP) drug metabolism. To understand the pharmacogenetics of TPMT and 6MP, X-ray co-crystal structures of TPMT complexes with S-adenosyl-L-methionine (AdoMet) and 6MP are required. However, the co-crystal structure of this complex has not been reported because 6MP is poorly water soluble. We used molecular dynamics (MD) simulation to predict the structure of the complex of human TPMT-AdoHcy(CH2)6MP, where the sulfur atoms of AdoHcy and 6MP were linked by a CH2 group. After 1300 picoseconds of MD simulation, the trajectory showed that 6MP was stabilized in the TPMT active site by formation of non-bonded interactions between 6MP and Phe40, Pro196 and Arg226 side chains of TPMT. The intersulfur distance between AdoHcy and 6MP as well as the binding modes and the interactions of our TPMT-AdoHcy model are consistent with those observed in the X-ray crystal structure of murine TPMT-AdoHcy-6MP complex. The predicted binding modes of AdoHcy and 6MP in our model are consistent with those observed in murine TPMT X-ray crystal structures, which provides structural insights into the interactions of TPMT, AdoHcy, and 6MP at the atomic level and may be used as a starting point for further study of thiopurine drug pharmacogenetics.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号