首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   2篇
  2023年   1篇
  2020年   1篇
  2018年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   9篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
2.
Strong temperature dependence of surface plasmon enhanced photoluminescence from silver nanoparticles embedded in a silica host matrix has been observed. The quantum yield of photoluminescence increases as the temperature decreases. Such an effect has been rationalized as being the result of an increase in the plasmonic enhancement factor as a consequence of the decrease in the plasmon damping constant. The decrease in the damping constant is due to a reduction in the electron–phonon scattering rate with the decrease in temperature. The temperature dependence of the photoluminescence quantum yield is stronger for small nanoparticles which reflects the strengthening of electron–phonon coupling in silver nanoparticles with a decrease of their size.  相似文献   
3.
Amyloid fibrils are rigid β‐pleated protein aggregates that are connected with series of harmful diseases and at the same time are promising as base for novel nanomaterials. Thus, design of compounds able to inhibit or redirect those aggregates formation is important both for the biomedical aims and for nanotechnology applications. Here, we studied the effect of tetraphenylporphyrins (metal free, their Cu and Pd complexes, and those functionalized by carboxy and amino groups on periphery) on insulin amyloid self‐assembling. The strongest impact on insulin aggregation was demonstrated by a metal‐free porphyrin bearing four carboxy groups. This compound strongly suppresses insulin aggregation (about 88% reduction in amyloid‐sensitive probe emission) inducing formation of fibrils with the length close to this of free insulin (1.7 ± 0.6 μm as compared with 1.4 ± 0.4 μm, respectively) with an essentially reduced tendency to lateral aggregation. Contrarily, the presence of tetraphenylporphyrin containing four amino groups only slightly affects fibrils' morphology and makes weaker impact on insulin aggregation yield (about 44% reduction). This is explained by the ability of aromatic carboxy groups of 5,10,15,20‐(tetra‐4‐carboxyphenyl)porphyrin to interact with complementary protein‐binding groups and thus stabilize the supramolecular complex. For 5,10,15,20‐(tetra‐4‐aminophenyl)porphyrin, full protonation takes place in acidic medium of protein aggregation reaction; this results in the high positive charge of TPPN4 (equal or close to +6) and hence higher contribution of coulombic repulsion to interaction of TPPN4 with insulin. One more possible mechanism of the lower inhibition effect of TPPN4 as compared with TPPC4 could be the more restricted possibility of the former as compared with the latter to form H bonds with insulin groups. It was also shown that metal‐free, Pd‐containing, and Cu‐containing tetraphenylporphyrins without peripheral substituents make almost the same impact on the protein self‐assembling. We suppose this to be due to coordination saturation of these metal atoms.  相似文献   
4.
Formation of the deposits of protein aggregates—amyloid fibrils in an intracellular and intercellular space—is common to a large group of amyloid‐associated disorders. Among the approaches to develop of therapy of such disorders is the use of agents preventing protein fibrillization. Polyaromatic complexes—porphyrins and phthalocyanines—are known as compounds possessing anti‐fibrillogenic activity. Here, we explore the impact of related macrocyclic complexes—phthalocyanines (Pc) and octaphenyl porphyrazines (Pz) of Mg and Zn—on aggregation of amyloidogenic protein insulin. Pz complexes are firstly reported as compounds able to affect protein fibrillization. The effect of Pc and Pz complexes on the kinetics and intensity of insulin aggregation was studied by the fluorescent assay using amyloid sensitive cyanine dye. This has shown the impact of metal ion on the anti‐fibrillogenic properties of macrocyclic complexes—the effect on the fibrillization kinetics of Mg‐containing compounds is much more pronounced comparing to that of Zn analogues. Scanning electron microscopy experiments have demonstrated that filamentous fibrils are the main product of aggregation both for free insulin and in the presence of macrocyclic complexes. However, those fibrils are distinct by their length and proneness to lateral aggregation. The Pc complexes cause the increase in variation of fibrils length 0.9 to 2.7 nm in opposite to 1.4 to 2.0 nm for free insulin, whereas Pz complexes cause certain shortening of the fibrils to 0.8 to 1.6 nm. The averaged size of the fibrils population was estimated by dynamic light scattering; it correlates with the size of single fibrils detected by scanning electron microscopy.  相似文献   
5.
Series of phthalocyanines of zirconium containing lysine, citric, nonanoic acid residues and dibenzolylmethane groups as out-of-plane ligands are firstly studied as inhibitors of fibrillogenesis using cyanine-based fluorescent inhibitory assay. It was shown that studied phthalocyanines at concentration of 20μM inhibited aggregation reaction on 38.5-57.6% and inhibitory activity of phthalocyanines depended on the chemical nature of out-of-plane ligand. For the most active compound PcZrLys(2) (zirconium phthalocyanine containing lysine fragment) the efficient inhibitor concentration was estimated to be 37μM. AFM studies have shown that in the presence of PcZrLys(2) the inhibition of fibrils formation and formation of spherical oligomeric aggregates took place. Due to the ability of phthalocyanines to decrease efficiently protein aggregation into the amyloid fibrils, modification of phthalocyanine molecules via out-of-plane substitutions was proposed as approach for design of anti-fibrillogenic agents with required properties.  相似文献   
6.
In rat lung and cultured lung vascular cells, hypoxia decreases ornithine decarboxylase (ODC) activity and increases polyamine import. In this study, we used rat cultured pulmonary artery endothelial cells to explore the mechanism of hypoxia-induced reduction in ODC activity and determined whether this event was functionally related to the increase in polyamine import. Two strategies known to suppress proteasome-mediated ODC degradation, lactacystin treatment and use of cells expressing a truncated ODC incapable of interacting with the proteasome, prevented the hypoxia-induced decrease in ODC activity. Interestingly, though, cellular abundance of the 24-kDa antizyme, a known physiological accelerator of ODC degradation, was not increased by hypoxia. These observations suggest that an antizyme-independent ODC degradation pathway contributes to hypoxia-induced reductions of ODC activity. When reductions in ODC activity in hypoxia were prevented by the proteasome inhibitor strategies, hypoxia failed to increase polyamine transport. The induction of polyamine transport in hypoxic pulmonary artery endothelial cells thus seems to require decreased ODC activity as an initiating event.  相似文献   
7.
The spectral luminescent properties of two groups of monomethine cyanine dyes were studied in the presence of DNA. The first group included five dyes with 5,6-methylenedioxy-[d]-benzo-1,3-thiazole heterocycle and their unsubstituted analogs. Five monomethine pyrylium cyanines and their N-methyl-pyridine analogs were included in the second group. In each pair the pyrylium and pyridine dyes had similar geometry but differed in charge density distribution. The results presented some evidence in favor of the half-intercalation interaction mode between the studied dyes and DNA. When the benzothiazole residue had the lowest electron donor ability between the two heterocycles in the dye molecule, its substitution with the bulky methylenedioxy group led to a significant decrease in fluorescence enhancement of the dye-DNA complex. On the contrary, when the substituents that create steric hindrance (e.g., methylenedioxy and methyl groups) were introduced into the heterocycle with the higher electron donor ability, the fluorescence enhancement value of the dye-DNA complex was virtually unchanged. The changes in the Stock's shift values upon the formation of the dye-DNA complexes were in agreement with the proposed half-intercalation model. Interestingly, in the dye-DNA complexes the pyrylium dyes probably resided in a place similar to the pyridine ones. It is possible that the benzothiazole (or benzooxazole) ring intercalated between the DNA bases and the pyrylium (or pyridine) residue was located in the DNA groove closer to the phosphate backbone.  相似文献   
8.
In the canonical model of smooth muscle (SM) contraction, the contractile force is generated by phosphorylation of the myosin regulatory light chain (RLC20) by the myosin light chain kinase (MLCK). Moreover, phosphorylation of the myosin targeting subunit (MYPT1) of the RLC20 phosphatase (MLCP) by the RhoA-dependent ROCK kinase, inhibits the phosphatase activity and consequently inhibits dephosphorylation of RLC20 with concomitant increase in contractile force, at constant intracellular [Ca2+]. This pathway is referred to as Ca2+-sensitization. There is, however, emerging evidence suggesting that additional Ser/Thr kinases may contribute to the regulatory pathways in SM. Here, we report data implicating the p90 ribosomal S6 kinase (RSK) in SM contractility. During both Ca2+- and agonist (U46619) induced SM contraction, RSK inhibition by the highly selective compound BI-D1870 (which has no effect on MLCK or ROCK) resulted in significant suppression of contractile force. Furthermore, phosphorylation levels of RLC20 and MYPT1 were both significantly decreased. Experiments involving the irreversible MLCP inhibitor microcystin-LR, in the absence of Ca2+, revealed that the decrease in phosphorylation levels of RLC20 upon RSK inhibition are not due solely to the increase in the phosphatase activity, but reflect direct or indirect phosphorylation of RLC20 by RSK. Finally, we show that agonist (U46619) stimulation of SM leads to activation of extracellular signal-regulated kinases ERK1/2 and PDK1, consistent with a canonical activation cascade for RSK. Thus, we demonstrate a novel and important physiological function of the p90 ribosomal S6 kinase, which to date has been typically associated with the regulation of gene expression.  相似文献   
9.
Peroxisomal matrix protein import is facilitated by cycling receptors shuttling between the cytosol and the peroxisomal membrane. One crucial step in this cycle is the ATP-dependent release of the receptors from the peroxisomal membrane. This step is facilitated by the peroxisomal AAA (ATPases associated with various cellular activities) proteins Pex1p and Pex6p with ubiquitination of the receptor being the main signal for its export. Here we report that the AAA complex contains dislocase as well as deubiquitinating activity. Ubp15p, a ubiquitin hydrolase, was identified as a novel constituent of the complex. Ubp15p partially localizes to peroxisomes and is capable of cleaving off ubiquitin moieties from the type I peroxisomal targeting sequence (PTS1) receptor Pex5p. Furthermore, Ubp15p-deficient cells are characterized by a stress-related PTS1 import defect. The results merge into a picture in which removal of ubiquitin from the PTS1 receptor Pex5p is a specific event and might represent a vital step in receptor recycling.  相似文献   
10.
The effect of various N,N′-substituents in the molecule of benzothiazole trimethine cyanine dye on its ability to sense the amyloid aggregates of protein was studied. The dyes are low fluorescent when free and in the presence of monomeric proteins, but their emission intensity sharply increases in complexes with aggregated insulin and lysozyme, with the fluorescence quantum yield reaching up to 0.42.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号