首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
  国内免费   2篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2008年   2篇
  2004年   1篇
排序方式: 共有21条查询结果,搜索用时 296 毫秒
1.
Vessel segmentation in retinal fundus images is a preliminary step to clinical diagnosis for some systemic diseases and some eye diseases. The performances of existing methods for segmenting small vessels which are usually of more importance than the main vessels in a clinical diagnosis are not satisfactory in clinical use. In this paper, we present a method for both main and peripheral vessel segmentation. A local gray-level change enhancement algorithm called gray-voting is used to enhance the small vessels, while a two-dimensional Gabor wavelet is used to extract the main vessels. We fuse the gray-voting results with the 2D-Gabor filter results as pre-processing outcome. A Gaussian mixture model is then used to extract vessel clusters from the pre-processing outcome, while small vessels fragments are obtained using another gray-voting process, which complements the vessel cluster extraction already performed. At the last step, we eliminate the fragments that do not belong to the vessels based on the shape of the fragments. We evaluated the approach with two publicly available DRIVE (Staal et al., 2004) and STARE (Hoover et at., 2000) datasets with manually segmented results. For the STARE dataset, when using the second manually segmented results which include much more small vessels than the first manually segmented results as the “gold standard,” this approach achieved an average sensitivity, accuracy and specificity of 65.0%, 92.1% and 97.0%, respectively. The sensitivities of this approach were much higher than those of the other existing methods, with comparable specificities; these results thus demonstrated that this approach was sensitive to detection of small vessels.  相似文献   
2.
3.
Secondary injury is a term applied to the destructive and self-propagating biological changes in cells and tissues that lead to their dysfunction or death over hours to weeks after the initial insult (the "primary injury"). In most contexts, the initial injury is usually mechanical. The more destructive phase of secondary injury is, however, more responsible for cell death and functional deficits. This subject is described and reviewed differently in the literature. To biomedical researchers, systemic and tissue-level changes such as hemorrhage, edema, and ischemia usually define this subject. To cell and molecular biologists, "secondary injury" refers to a series of predominately molecular events and an increasingly restricted set of aberrant biochemical pathways and products. These biochemical and ionic changes are seen to lead to death of the initially compromised cells and "healthy" cells nearby through necrosis or apoptosis. This latter process is called "bystander damage." These viewpoints have largely dominated the recent literature, especially in studies of the central nervous system (CNS), often without attempts to place the molecular events in the context of progressive systemic and tissue-level changes. Here we provide a more comprehensive and inclusive discussion of this topic.  相似文献   
4.
Kinesin‐2 motors power anterograde intraflagellar transport (IFT), a highly ordered process that assembles and maintains cilia. However, it remains elusive how kinesin‐2 motors are regulated in vivo. Here, we performed forward genetic screens to isolate suppressors that rescue the ciliary defects of OSM‐3‐kinesin (homolog of mammalian homodimeric kinesin‐2 KIF17) mutants in Caenorhabditis elegans. We identified the C. elegans dyf‐5 and dyf‐18, which encode the homologs of mammalian male germ cell‐associated kinase and cell cycle‐related kinase, respectively. Using time‐lapse fluorescence microscopy, we show that DYF‐5 and DYF‐18 are IFT cargo molecules and are enriched at the distal segments of sensory cilia. Mutations of dyf‐5 and dyf‐18 generate elongated cilia and ectopic localization of the heterotrimeric kinesin‐2 (kinesin‐II) at the ciliary distal segments. Genetic analyses reveal that dyf‐5 and dyf‐18 are important for stabilizing the interaction between IFT particles and OSM‐3‐kinesin. Our data suggest that DYF‐5 and DYF‐18 act in the same pathway to promote handover between kinesin‐II and OSM‐3 in sensory cilia.   相似文献   
5.
Quality control of herbal medicines   总被引:8,自引:0,他引:8  
Different chromatographic and electrophoretic techniques commonly used in the instrumental inspection of herbal medicines (HM) are first comprehensively reviewed. Chemical fingerprints obtained by chromatographic and electrophoretic techniques, especially by hyphenated chromatographies, are strongly recommended for the purpose of quality control of herbal medicines, since they might represent appropriately the "chemical integrities" of the herbal medicines and therefore be used for authentication and identification of the herbal products. Based on the conception of phytoequivalence, the chromatographic fingerprints of herbal medicines could be utilized for addressing the problem of quality control of herbal medicines. Several novel chemometric methods for evaluating the fingerprints of herbal products, such as the method based on information theory, similarity estimation, chemical pattern recognition, spectral correlative chromatogram (SCC), multivariate resolution, etc. are discussed in detail with examples, which showed that the combination of chromatographic fingerprints of herbal medicines and the chemometric evaluation might be a powerful tool for quality control of herbal products.  相似文献   
6.
7.
8.
Neuronal cilia that are formed at the dendritic endings of sensory neurons are essential for sensory perception. However, it remains unclear how the centriole‐derived basal body is positioned to form a template for cilium formation. Using fluorescence time‐lapse microscopy, we show that the centriole translocates from the cell body to the dendrite tip in the Caenorhabditis elegans sensory neurons. The centriolar protein SAS‐5 interacts with the dynein light‐chain LC8 and conditional mutations of cytoplasmic dynein‐1 block centriole translocation and ciliogenesis. The components of the central tube are essential for the biogenesis of centrioles, which later drive ciliogenesis in the dendrite; however, the centriole loses these components at the late stage of centriole translocation and subsequently recruits transition zone and intraflagellar transport proteins. Together, our results provide a comprehensive model of ciliogenesis in sensory neurons and reveal the importance of the dynein‐dependent centriole translocation in this process.  相似文献   
9.
The coronavirus disease 2019 (COVID-19) has been a global pandemic for more than 2 years and it still impacts our daily lifestyle and quality in unprecedented ways. A better understanding of immunity and its regulation in response to SARS-CoV-2 infection is urgently needed. Based on the current literature, we review here the various virus mutations and the evolving disease manifestations along with the alterations of immune responses with specific focuses on the innate immune response, neutrophil extracellular traps, humoral immunity, and cellular immunity. Different types of vaccines were compared and analyzed based on their unique properties to elicit specific immunity. Various therapeutic strategies such as antibody, anti-viral medications and inflammation control were discussed. We predict that with the available and continuously emerging new technologies, more powerful vaccines and administration schedules, more effective medications and better public health measures, the COVID-19 pandemic will be under control in the near future. Subject terms: Infectious diseases, Antimicrobial responses  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号