首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   1篇
  2021年   1篇
  2018年   3篇
  2015年   2篇
  2013年   1篇
  2012年   6篇
  2011年   4篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1982年   1篇
  1976年   1篇
  1973年   4篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
Forested headwater streams play an important role in watershed nutrient dynamics, and wood is thought to be a key factor influencing habitat structure and nitrate-nitrogen dynamics in many forested streams. Because wood in streams can promote nitrogen uptake through denitrification, we hypothesized that nitrate uptake velocities would decrease following wood removal. We measured stream characteristics and nitrate uptake velocities before and after wood manipulation experiments conducted at Hubbard Brook Experimental Forest, NH, and the Sleepers River watershed, VT. The mean size of stream substrates and the amount of riffle habitat increased following wood removal. In contrast to our expectations, summer nitrate uptake velocities increased in the wood removal treatments relative to the reference treatments, possibly because wood removal increased the availability of stable substrates for periphyton growth, therefore increasing nitrate demand in these streams. Our results highlight that effects of wood on stream ecosystems occur through multiple pathways and suggest that the relative importance of these pathways may vary seasonally.  相似文献   
2.
Sulfur deposition in the northeastern U.S. has been decreasing since the 1970s and there has been a concomitant decrease in the SO42– lost from drainage waters from forest catchments of this region. It has been established previously that the SO42– lost from drainage waters exceeds SO42– inputs in bulk precipitation, but the cause for this imbalance has not been resolved. The use of stable S isotopes and the availability of archived bulk precipitation and stream water samples at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire provided a unique opportunity to evaluate potential sources and sinks of S by analyzing the long-term patterns (1966–1994) of the 34S values of SO42–. In bulk precipitation adjacent to the Ecosystem Laboratory and near Watershed 6 the 34S values were greater (mean: 4.5 and 4.2l, respectively) and showed more variation (variance: 0.49 and 0.30) than stream samples from Watersheds 5 (W5) and 6 (W6) (mean: 3.2 and 3.7j; variance: 0.09 and 0.08, respectively). These results are consistent with other studies in forest catchments that have combined results for mass balances with stable S isotopes. These results indicate that for those sites, including the HBEF, where atmospheric inputs are 10 kg S ha–1 yr–1, most of the deposited SO42– cycles through the biomass before it is released to stream water. Results from W5, which had a whole-tree harvest in 1983–1984 showed that adsorption/desorption processes play an important role in regulating net SO42– retention for this watershed-ecosystem. Although the isotopic results suggest the importance of S mineralization, conclusive evidence that there is net mineralization has not yet been shown. However, S mass balances and the isotopic result are consistent with the mineralization of organic S being a major contributor to the SO42– in stream waters at the HBEF.  相似文献   
3.
Despite the widely recognized importance of disturbance in accelerating the loss of elements from land, there have been few empirical studies of the effects of natural disturbances on nitrogen (N) dynamics in forest ecosystems. We were provided the unusual opportunity for such study, partly because the intensively monitored watersheds at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, experienced severe canopy damage following an ice storm. Here we report the effects of this disturbance on internal N cycling and loss for watershed 1 (W1) and watershed 6 (W6) at the HBEF and patterns of N loss from nine other severely damaged watersheds across the southern White Mountains. This approach allowed us to test one component of N limitation theory, which suggests that N losses accompanying natural disturbances can lead to the maintenance of N limitation in temperate zone forest ecosystems. Prior to the ice storm, fluxes of nitrate (NO3 ) at the base of W1 and W6 were similar and were much lower than N inputs in atmospheric deposition. Following the ice storm, drainage water NO3 concentrations increased to levels that were seven to ten times greater than predisturbance values. We observed no significant differences in N mineralization, nitrification, or denitrification between damaged and undamaged areas in the HBEF watersheds, however. This result suggests that elevated NO3 - concentrations were not necessarily due to accelerated rates of N cycling by soil microbes but likely resulted from decreased plant uptake of NO3 -. At the regional scale, we observed high variability in the magnitude of NO3 - losses: while six of the surveyed watersheds showed accelerated rates of NO3 loss, three did not. Moreover, in contrast to the strong linear relationship between NO3 loss and crown damage within HBEF watersheds [r 2: (W1 = 0.91, W6 = 0.85)], stream water NO3 concentrations were weakly related to crown damage (r 2 = 0.17) across our regional sites. The efflux of NO3 associated with the ice storm was slightly higher than values reported for soil freezing and insect defoliation episodes, but was approximately two to ten times lower than NO3 fluxes associated with forest harvesting. Because over one half of the entire years worth of N deposition was lost following the ice storm, we conclude that catastrophic disturbances contribute synergistically to the maintenance of N limitation and widely observed delays of N saturation in northern, temperate zone forest ecosystems. Present address: Department of Ecology and Evolutionary Biology, Princeton University, Guyot Hall, Princeton, New Jersey 08544, USA.  相似文献   
4.
Wikipedia has quickly become one of the most frequently accessed encyclopedic references, despite the ease with which content can be changed and the potential for ‘edit wars’ surrounding controversial topics. Little is known about how this potential for controversy affects the accuracy and stability of information on scientific topics, especially those with associated political controversy. Here we present an analysis of the Wikipedia edit histories for seven scientific articles and show that topics we consider politically but not scientifically “controversial” (such as evolution and global warming) experience more frequent edits with more words changed per day than pages we consider “noncontroversial” (such as the standard model in physics or heliocentrism). For example, over the period we analyzed, the global warming page was edited on average (geometric mean ±SD) 1.9±2.7 times resulting in 110.9±10.3 words changed per day, while the standard model in physics was only edited 0.2±1.4 times resulting in 9.4±5.0 words changed per day. The high rate of change observed in these pages makes it difficult for experts to monitor accuracy and contribute time-consuming corrections, to the possible detriment of scientific accuracy. As our society turns to Wikipedia as a primary source of scientific information, it is vital we read it critically and with the understanding that the content is dynamic and vulnerable to vandalism and other shenanigans.  相似文献   
5.
In 2050, which aspects of ecosystem change will we regret not having measured? Long‐term monitoring plays a crucial part in managing Australia's natural environment because time is a key factor underpinning changes in ecosystems. It is critical to start measuring key attributes of ecosystems – and the human and natural process affecting them – now, so that we can track the trajectory of change over time. This will facilitate informed choices about how to manage ecological changes (including interventions where they are required) and promote better understanding by 2050 of how particular ecosystems have been shaped over time. There will be considerable value in building on existing long‐term monitoring programmes because this can add significantly to the temporal depth of information. The economic and social processes driving change in ecosystems are not identical in all ecosystems, so much of what is monitored (and the means by which it is monitored) will most likely target specific ecosystems or groups of ecosystems. To best understand the effects of ecosystem‐specific threats and drivers, monitoring also will need to address the economic and social factors underpinning ecosystem‐specific change. Therefore, robust assessments of the state of Australia's environment will be best achieved by reporting on the ecological performance of a representative sample of ecosystems over time. Political, policy and financial support to implement appropriate ecosystem‐specific monitoring is a perennial problem. We suggest that the value of ecological monitoring will be demonstrable, when plot‐based monitoring data make a unique and crucial contribution to Australia's ability to produce environmental accounts, environmental reports (e.g. the State of the Environment, State of the Forests) and to fulfilling reporting obligations under international agreements, such as the Convention on Biological Diversity. This paper suggests what must be done to meet Australia's ecological information needs by 2050.  相似文献   
6.
Evaluating, and possibly ameliorating, the effects of base cation depletion in forest soils caused by acid deposition is an important topic in the northeastern United States. We added 850 kg Ca ha−1 as wollastonite (CaSiO3) to an 11.8-ha watershed at the Hubbard Brook Experimental Forest (HBEF), a northern hardwood forest in New Hampshire, USA, in fall 1999 to replace calcium (Ca) leached from the ecosystem by acid deposition over the past 6 decades. Soil microbial biomass carbon (C) and nitrogen (N) concentrations, gross and potential net N mineralization and nitrification rates, soil solution and stream chemistry, soil:atmosphere trace gas (CO2, N2O, CH4) fluxes, and foliar N concentrations have been monitored in the treated watershed and in reference areas at the HBEF before and since the Ca addition. We expected that rates of microbial C and N cycle processes would increase in response to the treatment. By 2000, soil pH was increased by a full unit in the Oie soil horizon, and by 2002 it was increased by nearly 0.5 units in the Oa soil horizon. However, there were declines in the N content of the microbial biomass, potential net and gross N mineralization rates, and soil inorganic N pools in the Oie horizon of the treated watershed. Stream, soil solution, and foliar concentrations of N showed no response to treatment. The lack of stimulation of N cycling by Ca addition suggests that microbes may not be stimulated by increased pH and Ca levels in the naturally acidic soils at the HBEF, or that other factors (for example, phosphorus, or Ca binding of labile organic matter) may constrain the capacity of microbes to respond to increased pH in the treated watershed. Possible fates for the approximately 10 kg N ha−1 decline in microbial and soil inorganic pools include components of the plant community that we did not measure (for example, seedlings, understory shrubs), increased fluxes of N2 and/or N storage in soil organic matter. These results raise questions about the factors regulating microbial biomass and activity in northern hardwood forests that should be considered in the context of proposals to mitigate the depletion of nutrient cations in soil.  相似文献   
7.
Chloride (Cl?) has often been assumed to be relatively unreactive in forest ecosystems, and is frequently used as a conservative tracer to calculate fluxes of water and other ions. Recently, however, several studies have detailed cycling of Cl? in vegetation and soils. In this study Cl? budgets are compiled from 32 catchment studies to determine the extent to which Cl? is conserved in the passage through forest ecosystems. Chloride budgets from these sites vary from net retention (input?>?output) to net release (output?>?input). In the overall data set, including those sites with very high inputs of seasalt Cl?, there was a strong correspondence between inputs and outputs. However, sites with low Cl? deposition (<6?kg?ha?1?year?1) consistently showed net release of Cl?, suggesting an internal source or a declining internal pool. The results indicate that Cl? may be a conservative ion in sites with high Cl? deposition, but in sites with low deposition Cl? may not be conservative. We discuss the possible causes of the Cl? imbalance and reasons why Cl? may not be conservative in ecosystem functions.  相似文献   
8.
Buffering an Acidic Stream in New Hampshire with a Silicate Mineral   总被引:3,自引:0,他引:3  
Ground and pelletized Wollastonite (Wo; CaSiO3) was added to a 50‐m reach of an anthropogenically acidified stream within the Hubbard Brook Experimental Forest, New Hampshire, to evaluate its buffering and restoration potential. The Wo was highly effective in raising the pH, acid‐neutralizing capacity (ANC), dissolved inorganic carbon (DIC), and Ca2+ concentrations of the stream water, but during the short duration of the experiment had no discernable effect on the stream biota. After initial, spike‐like fluctuations in pH and concentrations of ANC, DIC, and Ca2+, the relatively slow dissolution rates of the Wo dampened extreme concentrations and contributed to relatively long‐lasting (4 months) amelioration of streamwater acidity. Changes in concentrations of Ca2+, dissolved Si, ANC, and DIC were inversely related to streamflow. After several high, stream‐discharge events, concentrations quickly and consistently returned to pre‐event conditions.  相似文献   
9.
1. Although dissolved nutrients and the quality of particulate organic matter (POM) influence microbial processes in aquatic systems, these factors have rarely been considered simultaneously. We manipulated dissolved nutrient concentrations and POM type in three contiguous reaches (reference, nitrogen, nitrogen + phosphorus) of a low nutrient, third‐order stream at Hubbard Brook Experimental Forest (U.S.A). In each reach we placed species of leaves (mean C : N of 68 and C : P of 2284) and wood (mean C : N of 721 and C : P of 60 654) that differed in elemental composition. We measured the respiration and biomass of microbes associated with this POM before and after nutrient addition. 2. Before nutrient addition, microbial respiration rates and biomass were higher for leaves than for wood. Respiration rates of microbes associated with wood showed a larger response to increased dissolved nutrient concentrations than respiration rates of microbes associated with leaves, suggesting that the response of microbes to increased dissolved nutrients was influenced by the quality of their substrate. 3. Overall, dissolved nutrients had strong positive effects on microbial respiration and fungal, but not bacterial, biomass, indicating that microbial respiration and fungi were nutrient limited. The concentration of nitrate in the enriched reaches was within the range of natural variation in forest streams, suggesting that natural variation in nitrate among forest streams influences carbon mineralisation and fungal biomass.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号