首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2407篇
  免费   190篇
  国内免费   1篇
  2022年   23篇
  2021年   41篇
  2020年   14篇
  2019年   24篇
  2018年   39篇
  2017年   28篇
  2016年   66篇
  2015年   111篇
  2014年   127篇
  2013年   135篇
  2012年   208篇
  2011年   155篇
  2010年   109篇
  2009年   109篇
  2008年   139篇
  2007年   131篇
  2006年   107篇
  2005年   96篇
  2004年   115篇
  2003年   99篇
  2002年   107篇
  2001年   37篇
  2000年   29篇
  1999年   43篇
  1998年   34篇
  1997年   31篇
  1996年   24篇
  1995年   17篇
  1994年   21篇
  1993年   16篇
  1992年   34篇
  1991年   10篇
  1990年   16篇
  1989年   19篇
  1988年   12篇
  1987年   10篇
  1986年   19篇
  1983年   11篇
  1979年   12篇
  1978年   9篇
  1977年   9篇
  1976年   11篇
  1975年   10篇
  1974年   13篇
  1973年   10篇
  1971年   14篇
  1970年   15篇
  1969年   12篇
  1968年   13篇
  1966年   8篇
排序方式: 共有2598条查询结果,搜索用时 15 毫秒
1.
Recent experimental evidence suggests that coordinated expression of ion channels plays a role in constraining neuronal electrical activity. In particular, each neuronal cell type of the crustacean stomatogastric ganglion exhibits a unique set of positive linear correlations between ionic membrane conductances. These data suggest a causal relationship between expressed conductance correlations and features of cellular identity, namely electrical activity type. To test this idea, we used an existing database of conductance-based model neurons. We partitioned this database based on various measures of intrinsic activity, to approximate distinctions between biological cell types. We then tested individual conductance pairs for linear dependence to identify correlations. Contrary to experimental evidence, in which all conductance correlations are positive, 32% of correlations seen in this database were negative relationships. In addition, 80% of correlations seen here involved at least one calcium conductance, which have been difficult to measure experimentally. Similar to experimental results, each activity type investigated had a unique combination of correlated conductances. Finally, we found that populations of models that conform to a specific conductance correlation have a higher likelihood of exhibiting a particular feature of electrical activity. We conclude that regulating conductance ratios can support proper electrical activity of a wide range of cell types, particularly when the identity of the cell is well-defined by one or two features of its activity. Furthermore, we predict that previously unseen negative correlations and correlations involving calcium conductances are biologically plausible.  相似文献   
2.
After separation of gangliosides by thin-layer chromatography, femtomolar quantities of GM1 were detected by incubating the plate with native choleratoxin, followed by anticholeratoxin and species-specific labeled antiserum. Only stable reagents were involved when antiserum labeled with horseradish peroxidase was used. Native choleratoxin rather than iodinelabeled toxin ensured good reproducibility of the method.  相似文献   
3.
4.
5.
Ribonuclease P: the diversity of a ubiquitous RNA processing enzyme   总被引:8,自引:0,他引:8  
Ribonuclease P is the endonuclease required for generating the mature tRNA 5'-end. The ribonucleoprotein character of this enzyme has now been proven in most organisms and organelles. Exceptions, however, are still the chloroplasts, plant nuclei and animal mitochondria where no associated RNAs have been detected to date. In contrast to the known RNA subunits, which are fairly well-conserved in size and structure among diverse phylogenetic groups, the protein contribution to the holoenzyme is highly variable in size and number of the individual components. The structure of the bacterial protein component has recently been solved. In contrast, the spatial arrangement of the multiple subunits in eukaryotic enzymes is still enigmatic. Substrate requirements of the enzymes or their catalytic RNA subunits are equally diverse, ranging from simple single domain mimics to an almost intact three-dimensional structure of the pre-tRNA substrate. As an example for an intermediate in the enzyme evolution, ribonuclease P from the Cyanophora paradoxa cyanelle will be discussed in more detail. This enzyme is unique, as it combines cyanobacterial and eukaryotic features in its function, subunit composition and holoenzyme topology.  相似文献   
6.
7.
8.
Glucose and amino acid metabolism in 1- and 30-day-old chick telencephalon slices was studied in two incubation media in the presence or in the absence of a continuous oxygenation. Medium 1 has a composition and a tonicity similar to cerebrospinal fluid, medium 2 is hypertonic and does not contain any K+ ions. The incorporation of glucose carbon into amino acids and the distribution of radioactivity between the different amino acids are close to the ones observed in the chick brain in vivo only when the slices are incubated in medium 1, with oxygen at 30 days and without oxygen for the 1-day-old chick. It also appears that if oxygenation is necessary for incubation of mature brain tissue in vitro, the absence of the medium oxygenation is more suitable for the study of glucose metabolism in 1-day-old chick brain slices.  相似文献   
9.
Two hundred and eighty-two alloantisera were submitted by 20 participating laboratories from 13 countries and tested against lymphocytes of 1298 cattle. The cell panel consisted of samples from 38 Bos taurus breeds, 11 Bos taurus crossbreeds, 4 Bos indicus breeds, 6 Bos taurus x Bos indicus, and a variety of other crossbred populations. Using a standardized lymphocytotoxicity test, all 17 previously identified BoLA specificities were confirmed. The workshop produced agreement on 16 new lymphocyte alloantigenic specificities. Three of the new specificities behaved as splits of previously identified BoLA specificities. Four of the new specificities behaved as alleles at the agreed BoLA-A locus. Seven new specificities are tentatively assigned to the BoLA-A locus but require further definition. Two new specificities may represent products of a second closely-linked BoLA locus.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号