首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   950篇
  免费   64篇
  国内免费   1篇
  2023年   5篇
  2022年   12篇
  2021年   33篇
  2020年   27篇
  2019年   29篇
  2018年   38篇
  2017年   20篇
  2016年   52篇
  2015年   56篇
  2014年   63篇
  2013年   72篇
  2012年   93篇
  2011年   71篇
  2010年   39篇
  2009年   55篇
  2008年   51篇
  2007年   64篇
  2006年   50篇
  2005年   31篇
  2004年   32篇
  2003年   36篇
  2002年   21篇
  2001年   8篇
  2000年   9篇
  1999年   7篇
  1998年   9篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有1015条查询结果,搜索用时 797 毫秒
1.
The mitochondrial oxidative phosphorylation system consists of five multimeric enzymes (complexes I-V). NADH dehydrogenase or complex I (CI) is affected in most of the mitochondrial diseases and in some neurodegenerative disorders. We have studied the physiological consequences of a partial CI inhibition at the cellular level. We used a genetic model (40% CI-inhibited human-ape xenomitochondrial cybrids) and a drug-induced model (0-100% CI-inhibited cells using different concentrations of rotenone). We observed a quantitative correlation between the level of CI impairment and cell respiration, cell growth, free radical production, lipid peroxidation, mitochondrial membrane potential, and apoptosis. We showed that cell death was quantitatively associated with free radical production rather than with a decrease in respiratory chain function. The results obtained with human xenomitochondrial cybrid cells were compatible with those observed in rotenone-induced 40% CI-inhibited cells. At high concentrations (5-6-fold higher than the concentration necessary for 100% CI inhibition), rotenone showed a second toxic effect at the level of microtubule assembly, which also led to apoptosis. The correlation found among all the parameters studied helped clarify the physiological consequences of partial CI inhibitions at the cellular level.  相似文献   
2.
3.
1. Manipulation of host behaviour by parasitoids has long captured the imagination of ecologists. Parasitoid wasps in the Polysphincta group of genera develop as external parasitoids of spiders. 2. In the present study, the previously undescribed interaction between a Zatypota sp. wasp (Ichneumonidae) and a social spider Anelosimus eximius (Theridiidae) is described. The larva of this Zatypota wasp is found to induce its host to disperse from their communal web and build an entirely enclosed web consisting of densely spun silk. 3. The wasp is observed to target primarily immature A. eximius individuals, with 37.5–44% of nests in a given area being parasitised. Of those nests, approximately 1.3–2.0% of individuals are hosts to the parasitoid larvae. Larger spider colonies had a significantly higher probability of harbouring parasitoids. 4. This interaction results in unusual behaviours for A. eximius induced by the parasitoid: (i) leaving the protection of the social nest and (ii) building a unique, altered web that it would not otherwise build. It is suggested that the wasp may be tapping into ancestral dispersal behaviours in its host and that a social species provides this wasp an evolutionary advantage by allowing a stable host source.  相似文献   
4.
Summary The influence of starvation on renal carbohydrate metabolism was studied in the proximal and distal fragments of the nephron. Starvation induced a double and opposite adaptation mechanism in both fractions of the renal tubule. In renal proximal tubules, the gluconeogenic flux was stimulated progressively during a period of 48 hours of starvation (2.15 fold), due, in part, to a significant increase in the fructose 1,6-bisphosphatase and phosphoenolpyruvate carboxykinase activities although with different characteristics. Fructose 1,6-bisphosphatase activity from this tubular fragment increased only at subsaturating subtrate concentration (68%) which involved a significant decrease in the Km (35%) for fructose 1,6-bisphosphate while there was no change in Vmax. This behaviour clearly indicates that it is related to modifications in the activity of the preexistent enzyme in the cell. Proximal phosphoenolpyruvate carboxykinase activity increased proportionally at both substrate concentrations (86 and 89% respectively) which brought about changes in Vmax without changes in Kin, all of which are in accordance with variations in the cellular levels of the enzyme. In the renal distal tubules, the glycolytic capacity drastically decreased throughout the starvation time. At 48 hours 65% of inhibition was shown. We have found a short term regulation of phosphofructokinase activity by starvation which involves an increase in Km (2.2 fold) without changes in Vmax, as a result of these kinetic changes, an inactivation of phosphofructokinase was detected at subsaturating concentration of fructose 6-phosphate. On the contrary, this nutritional state did not modify the kinetic behaviour of renal pyruvate kinase. Finally, neither proximal glycolytic nor distal gluconeogenic capacities and related enzymes activities were changed during starvation.  相似文献   
5.
We have studied the effects of the diuretics mersalyl, furosemide and ethacrynic acid on renal gluconeogenesis in isolated rat-kidney tubules and on the activities of the most important gluconeogenic and glycolytic enzymes in both fed and fasted rats. Mersalyl (15 mg.kg–1 animal weight) significantly decreased the rate of gluconeogenesis in well-fed rats (68%) as well as in 24 and 48-h fasted ones (33 and 37% respectively). This inhibition occurred when lactate, pyruvate, glycerol or fructose were used as substrates. Ethacrynic acid at a dose of 50 mg.kg–1 animal weight provoked a transient inhibition of renal glucose production by almost 20% but only in fed rats with lactate as substrate, whereas the same dose of furosemide did not affect this metabolic pathway.Parallel to these changes, mersalyl caused a significant inhibition in the maximum activity of the most important gluconeogenic enzymes, phosphoenolpyruvate carboxykinase, fructose 1,6-bisphosphatase and glucose 6-phosphatase, in both fed and fasted rats. Neither ethacrynic acid nor furosemide produced any variations in the activities of these enzymes. The activity of the glycolytic enzymes phosphofructokinase and pyruvate kinase was not modified by these diuretics. Nevertheless, the activity of the thiol-enzyme glyceraldehyde 3-phosphate dehydrogenase was severely inhibited by mersalyl and to a lesser extent by the other diuretics. This inhibition was higher in fasted than fed rats. Hence, we conclude that the inhibitory effect of mersalyl on renal gluconeogenesis is due, at least partly, to a decrease in the flux through the gluconeogenic enzymes. Blood glucose was not modified after diuretic treatment in fed animals whereas mersalyl decreased the levels of blood glucose in 24-h fasted rats. Thein vivo effects of diuretics on gluconeogenesis correlate well with the previously observedin vitro effects, although ethacrynic acid was less potent as an inhibitorin vivo, probably because of its rapid clearance.Abbreviations EDTA ethylenediaminetetraacetic acid - EGTA ethyleneglycolbis (-aminoethylether) N,N,N,N-tetraacetic acid - DTT dithiothreitol - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - TRIS 2-amino-2-hydroxymethyl-1,3-propanediol Publication No. 166 from Drogas, Tóxicos Ambientales y Metabolismo Celular Research Group, Department of Biochemistry and Molecular Biology, University of Granada, Granada, Spain  相似文献   
6.
L Barrientos  J J Scott    P P Murthy 《Plant physiology》1994,106(4):1489-1495
Phytases are the primary enzymes responsible for the hydrolysis of phytic acid, myo-inositol-1,2,3,4,5,6-hexakisphosphate (I-1,2,3,4,5,6-P6). A number of phytases with varying specificities, properties, and localizations hydrolyze phytic acid present in cells. The specificity of hydrolysis of phytic acid by alkaline phytase from lily (Lilium longiflorum L.) pollen is described. Structures of the intermediate inositol phosphates and the final product were established by a variety of nuclear magnetic resonance techniques (1H-, 31P-, and 31P-1H-detected multiple quantum coherence spectroscopy, and total correlation spectroscopy). On the basis of the structures identified we have proposed a scheme of hydrolysis of phytic acid. Initial hydrolysis of the phosphate ester occurs at the D-5 position of phytic acid to yield the symmetrical I-1,2,3,4,6-P5. The two subsequent dephosphorylations occur adjacent to the D-5 hydroxyl group to yield I-1,2,3-P3 as the final product. Alkaline phytase differs from other phytases in the specificity of hydrolysis of phosphate esters on the inositol ring, its high substrate specificity for phytic acid, and biochemical properties such as susceptibility to activation by calcium and inhibition by fluoride. The physiological significance of alkaline phytase and the biological role of I-1,2,3-P3 remain to be identified.  相似文献   
7.
Alcohol-induced pancreas damage remains as one of the main risk factors for pancreatitis development. This disorder is poorly understood, particularly the effect of acetaldehyde, the primary alcohol metabolite, in the endocrine pancreas. Hepatocyte growth factor (HGF) is a protective protein in many tissues, displaying antioxidant, antiapoptotic, and proliferative responses. In the present work, we were focused on characterizing the response induced by HGF and its protective mechanism in the RINm5F pancreatic cell line treated with ethanol and acetaldehyde. RINm5F cells were treated with ethanol or acetaldehyde for 12 h in the presence or not of HGF (50 ng/ml). Cells under HGF treatment decreased the content of reactive oxygen species and lipid peroxidation induced by both toxics, improving cell viability. This effect was correlated to an improvement in insulin expression impaired by ethanol and acetaldehyde. Using a specific inhibitor of Erk1/2 abrogated the effects elicited by the growth factor. In conclusion, the work provides mechanistic evidence of the HGF-induced-protective response to the alcohol-induced damage in the main cellular component of the endocrine pancreas.  相似文献   
8.
In aqueous media, muscle pyruvate kinase is highly selective for K+ over Na+. We now studied the selectivity of pyruvate kinase in water/dimethylsulfoxide mixtures by measuring the activation and inhibition constants of K+ and Na+, i.e. their binding to the monovalent and divalent cation binding sites of pyruvate kinase, respectively [Melchoir J.B. (1965) Biochemistry 4, 1518-1525]. In 40% dimethylsulfoxide the K0.5 app for K+ and Na+ were 190 and 64-fold lower than in water. Ki app for K+ and Na+ decreased 116 and 135-fold between 20 and 40% dimethylsulfoxide. The ratios of Ki app/K0.5 app for K+ and Na+ were 34-3.5 and 3.3-0.2, respectively. Therefore, dimethylsulfoxide favored the partition of K+ and Na+ into the monovalent and divalent cation binding sites of the enzyme. The kinetics of the enzyme at subsaturating concentrations of activators show that K+ and Mg2+ exhibit high selectivity for their respective cation binding sites, whereas when Na+ substitutes K+, Na+ and Mg2+ bind with high affinity to their incorrect sites. This is evident by the ratio of the affinities of Mg2+ and K+ for the monovalent cation binding site, which is close to 200. For Na+ and Mg2+ this ratio is approximately 20. Therefore, the data suggest that K+ induces conformational changes that prevent the binding of Mg2+ to the monovalent cation binding site. Circular dichroism spectra of the enzyme and the magnitude of the transfer and apparent binding energies of K+ and Na+ indicate that structural arrangements of the enzyme induced by dimethylsulfoxide determine the affinities of pyruvate kinase for K+ and Na+.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号