首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   3篇
  2021年   7篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   6篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
排序方式: 共有43条查询结果,搜索用时 31 毫秒
1.
2.
The sex chromosomes and autosomes spend different times in the germ line of the two sexes. If cell division is mutagenic and if the sexes differ in number of cell divisions, then we expect that sequences on the X and Y chromosomes and autosomes should mutate at different rates. Tests of this hypothesis for several mammalian species have led to conflicting results. At the same time, recent evidence suggests that the chromosomal location of genes on autosomes affects their rate of evolution at synonymous sites. This suggests a mutagenic source different from germ cell replication. To correctly interpret the previous estimates of male mutation bias, it is crucial to understand the degree and range of this local similarity. With a carefully chosen randomization protocol, local similarity in synonymous rates of evolution can be detected in human-rodent and mouse-rat comparisons. However, the synonymous-site similarity in the mouse-rat comparison remains weak. Simulations suggest that this difference between the mouse-human and the mouse-rat comparisons is not artifactual and that there is therefore a difference between humans and rodents in the local patterns of mutation or selection on synonymous sites (conversely, we show that the previously reported absence of a local similarity in nonsynonymous rates of evolution in the human-rodent comparison was a methodological artifact). We show that linkage effects have a long-range component: not one in a million random genomes shows such levels of autosomal heterogeneity. The heterogeneity is so great that more autosomes than expected by chance have rates of synonymous evolution comparable with that of the X chromosome. As autosomal heterogeneity cannot be owing to different times spent in the germ line, this demonstrates that the dominant determiner of synonymous rates of evolution is not, as has been conjectured, the time spent in the male germ line.  相似文献   
3.
Carvedilol is currently used as the racemic mixture, (R,S)-carvedilol, consisting of equal amounts of (R)-carvedilol, an alpha-blocker, and (S)-carvedilol, an alpha- and beta-blocker, which have never been tested in their optically pure forms in human subjects. We performed a randomized, double-blind, placebo-controlled, crossover study in 12 healthy male volunteers. Subjects received single oral doses of 25 mg (R,S)-carvedilol, 12.5 mg (R)-carvedilol, 12.5 mg (S)-carvedilol, and placebo at 8 AM as well as at 8 PM. Exercise was performed at 11 AM, and heart rate and blood pressure were measured at rest and after 10 min of exercise. Urine was collected between 10 AM and 6 PM, as well as between 10 PM and 6 AM, and the amounts of urinary 6-hydroxy-melatonin sulfate (aMT6s) were determined by RIA. Compared to placebo, (R)-carvedilol increased heart rate during exercise (+4%, P < 0.05) and recovery (+10%, P < 0.05); (S)-carvedilol decreased heart rate during exercise (-14%, P < 0.05) and recovery (-6%, P < 0.05), and systolic blood pressure during exercise (-12%, P < 0.05); (R,S)-carvedilol decreased heart rate during exercise (-11%, P < 0.05), and systolic blood pressure at rest (-7%, P < 0.05) and during exercise (-10%, P < 0.05). None of the agents had any significant effect on the release of aMT6s. Our results indicate that only (S)-carvedilol causes beta-blockade, whereas (R)-carvedilol appears to increase sympathetic tone, presumably as a physiological reaction to the decrease of blood pressure caused by alpha-blockade. None of the drugs had any influence on melatonin release. The weak clinical net effect of beta-blockade of (R,S)-carvedilol at rest might be one reason why this drug causes fewer side effects than other beta-blockers, such as a reduction of nocturnal melatonin release.  相似文献   
4.
The purpose of this study was to test the hypothesis that myocardial ischemia-reperfusion (I/R) is accompanied by an early burst in calpain activity, resulting in decreased calpastatin activity and an increased calpain/calpastatin ratio, thereby promoting increased protein release. To determine the possibility of a calpain burst impacting cardiac calpastatin inhibitory activity, rat hearts were subjected (Langendorff) to either 45 or 60 min of ischemia followed by 30 min of reperfusion with and without pre-administration (s.c.) of a cysteine protease inhibitor (E-64c). Myocardial function, calpain activities (casein release assay), calpastatin inhibitory activity and release of CK, LDH, cTnI and cTnT were determined (n = 8 for all groups). As expected no detectable changes in calpain activities were observed following I/R with and without E-64c (p > 0.05). Both I/R conditions reduced calpastatin activity (p < 0.05) while E-64c pre-treatment was without affect, implicating a non-proteolytic event underlying the calpastatin changes. A similar result was noted for calpain–calpastatin ratios and the release of all marker proteins (p < 0.05). In regard to cardiac function, E-64c resulted in transient improvements (15 min) for left ventricular developed pressure (LVDP) and rate of pressure development (p < 0.05). E-64c had no effect on end diastolic pressure (LVEDP) or coronary pressure (CP) during I/R. These findings demonstrate that restricting the putative early burst in calpain activity, suggested for I/R, by pre-treatment of rats with E-64c does not prevent downegulation of calpastatin inhibitory activity and/or protein release despite a transient improvement in cardiac function. It is concluded that increases in calpain isoform activities are not a primary feature of I/R changes, although the role of calpastatin downregulation remains to be elucidated.  相似文献   
5.
Wang GZ  Lercher MJ 《PloS one》2011,6(4):e18288
Interacting proteins may often experience similar selection pressures. Thus, we may expect that neighbouring proteins in biological interaction networks evolve at similar rates. This has been previously shown for protein-protein interaction networks. Similarly, we find correlated rates of evolution of neighbours in networks based on co-expression, metabolism, and synthetic lethal genetic interactions. While the correlations are statistically significant, their magnitude is small, with network effects explaining only between 2% and 7% of the variation. The strongest known predictor of the rate of protein evolution remains expression level. We confirmed the previous observation that similar expression levels of neighbours indeed explain their similar evolution rates in protein-protein networks, and showed that the same is true for metabolic networks. In co-expression and synthetic lethal genetic interaction networks, however, neighbouring genes still show somewhat similar evolutionary rates even after simultaneously controlling for expression level, gene essentiality and gene length. Thus, similar expression levels and related functions (as inferred from co-expression and synthetic lethal interactions) seem to explain correlated evolutionary rates of network neighbours across all currently available types of biological networks.  相似文献   
6.
Although sequences containing regulatory elements located close to protein-coding genes are often only weakly conserved during evolution, comparisons of rodent genomes have implied that these sequences are subject to some selective constraints. Evolutionary conservation is particularly apparent upstream of coding sequences and in first introns, regions that are enriched for regulatory elements. By comparing the human and chimpanzee genomes, we show here that there is almost no evidence for conservation in these regions in hominids. Furthermore, we show that gene expression is diverging more rapidly in hominids than in murids per unit of neutral sequence divergence. By combining data on polymorphism levels in human noncoding DNA and the corresponding human–chimpanzee divergence, we show that the proportion of adaptive substitutions in these regions in hominids is very low. It therefore seems likely that the lack of conservation and increased rate of gene expression divergence are caused by a reduction in the effectiveness of natural selection against deleterious mutations because of the low effective population sizes of hominids. This has resulted in the accumulation of a large number of deleterious mutations in sequences containing gene control elements and hence a widespread degradation of the genome during the evolution of humans and chimpanzees.  相似文献   
7.
8.
9.

Background

The rate of molecular evolution varies widely between proteins, both within and among lineages. To what extent is this variation influenced by genome-wide, lineage-specific effects? To answer this question, we assess the rate variation between insect lineages for a large number of orthologous genes.

Results

When compared to the beetle Tribolium castaneum, we find that the stem lineage of flies and mosquitoes (Diptera) has experienced on average a 3-fold increase in the rate of evolution. Pairwise gene comparisons between Drosophila and Tribolium show a high correlation between evolutionary rates of orthologous proteins.

Conclusion

Gene specific divergence rates remain roughly constant over long evolutionary times, modulated by genome-wide, lineage-specific effects. Among the insects analysed so far, it appears that the Tribolium genes show the lowest rates of divergence. This has the practical consequence that homology searches for human genes yield significantly better matches in Tribolium than in Drosophila. We therefore suggest that Tribolium is better suited for comparisons between phyla than the widely employed dipterans.  相似文献   
10.
Recently duplicated genes are believed to often overlap in function and expression. A priori, they are thus less likely to be essential. Although this was indeed observed in yeast, mouse singletons and duplicates were reported to be equally often essential. This contradiction can only partly be explained by experimental biases. We herein show that older genes (i.e., genes with earlier phyletic origin) are more likely to be essential, regardless of their duplication status. At a given phyletic gene age, duplicates are always less likely to be essential compared with singletons. The "paradoxical" high essentiality among mouse gene duplicates is then caused by different age profiles of singletons and duplicates, with the latter tending to be derived from older genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号