首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2022年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
Mycopathologia - Aspergillus endocarditis is a rare infection that may affect immunocompetent patients following heart valve replacement or heart surgery. We report the case of a 39 year...  相似文献   
2.

Background

Management of febrile neutropenic episodes (FE) is challenged by lacking microbiological and clinical documentation of infection. We aimed at evaluating the utility of monitoring blood procalcitonin (PCT) in FE for initial diagnosis of infection and reassessment in persistent fever.

Methods

PCT kinetics was prospectively monitored in 194 consecutive FE (1771 blood samples): 65 microbiologically documented infections (MDI, 33.5%; 49 due to non-coagulase-negative staphylococci, non-CNS), 68 clinically documented infections (CDI, 35%; 39 deep-seated), and 61 fever of unexplained origin (FUO, 31.5%).

Results

At fever onset median PCT was 190 pg/mL (range 30–26''800), without significant difference among MDI, CDI and FUO. PCT peak occurred on day 2 after onset of fever: non-CNS-MDI/deep-seated-CDI (656, 80–86350) vs. FUO (205, 33–771; p<0.001). PCT >500 pg/mL distinguished non-CNS-MDI/deep-seated-CDI from FUO with 56% sensitivity and 90% specificity. PCT was >500 pg/ml in only 10% of FUO (688, 570–771). A PCT peak >500 pg/mL (1196, 524–11950) occurred beyond 3 days of persistent fever in 17/21 (81%) invasive fungal diseases (IFD). This late PCT peak identified IFD with 81% sensitivity and 57% specificity and preceded diagnosis according to EORTC-MSG criteria in 41% of cases. In IFD responding to therapy, median days to PCT <500 pg/mL and defervescence were 5 (1–23) vs. 10 (3–22; p = 0.026), respectively.

Conclusion

While procalcitonin is not useful for diagnosis of infection at onset of neutropenic fever, it may help to distinguish a minority of potentially severe infections among FUOs on day 2 after onset of fever. In persistent fever monitoring procalcitonin contributes to early diagnosis and follow-up of invasive mycoses.  相似文献   
3.
Gait research and clinical gait training may benefit from movement-dependent event control, that is, technical applications in which events such as obstacle appearance or visual/acoustic cueing are (co)determined online on the basis of current gait properties. A prerequisite for successful gait-dependent event control is accurate online detection of gait events such as foot contact (FC) and foot off (FO). The objective of the present study was to assess the feasibility of online FC and FO detection using a single large force platform embedded in a treadmill. Center-of-pressure, total force output and kinematic data were recorded simultaneously in 12 healthy participants. Online FC and FO estimates and spatial and temporal gait parameters estimated from the force platform data-i.e., center-of-pressure profiles-were compared to offline kinematic counterparts, which served as the gold standard. Good correspondence was achieved between online FC detections using center-of-pressure profiles and those derived offline from kinematic data, whereas FO was detected 31ms too late. A good relative and absolute agreement was achieved for both spatial and temporal gait parameters, which was improved further by applying more fine-grained FO estimation procedures using characteristic local minima in the total force output time series. These positive results suggest that the proposed system for gait-dependent event control may be successfully implemented in gait research as well as gait interventions in clinical practice.  相似文献   
4.
BackgroundIt has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process.Methods17 Participants received visual feedback-based practice (feedback group) and 15 participants received regular practice (natural learning group). Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block) and optimize it in the prescribed direction (2nd 4-min block). To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability.ResultsThe feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group.ConclusionThese results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not always appear simultaneously during the motor learning process. Their relationship is most likely modified by other factors such as the amount of the intra-individual variability.  相似文献   
5.
Human walking requires active neuromuscular control to ensure stability in the lateral direction, which inflicts a certain metabolic load. The magnitude of this metabolic load has previously been investigated by means of passive external lateral stabilization via spring-like cords. In the present study, we applied this method to test two hypotheses: (1) the effect of external stabilization on energy cost depends on the stiffness of the stabilizing springs, and (2) the energy cost for balance control, and consequently the effect of external stabilization on energy cost, depends on walking speed. Fourteen healthy young adults walked on a motor driven treadmill without stabilization and with stabilization with four different spring stiffnesses (between 760 and 1820 N m−1) at three walking speeds (70%, 100%, and 130% of preferred speed). Energy cost was calculated from breath-by-breath oxygen consumption. Gait parameters (mean and variability of step width and stride length, and variability of trunk accelerations) were calculated from kinematic data. On average external stabilization led to a decrease in energy cost of 6% (p<0.005) as well as a decrease in step width (24%; p<0.001), step width variability (41%; p<0.001) and variability of medio-lateral trunk acceleration (12.5%; p<0.005). Increasing stabilizer stiffness increased the effects on both energy cost and medio-lateral gait parameters up to a stiffness of 1260 N m−1. Contrary to expectations, the effect of stabilization was independent of walking speed (p=0.111). These results show that active lateral stabilization during walking involves an energetic cost, which is independent of walking speed.  相似文献   
6.
Exergames provide a challenging opportunity for home-based training and evaluation of postural control in the elderly population, but affordable sensor technology and algorithms for assessment of whole body movement patterns in the home environment are yet to be developed. The aim of the present study was to evaluate the use of Kinect, a commonly available video game sensor, for capturing and analyzing whole body movement patterns. Healthy adults (n=20) played a weight shifting exergame under five different conditions with varying amplitudes and speed of sway movement, while 3D positions of ten body segments were recorded in the frontal plane using Kinect and a Vicon 3D camera system. Principal Component Analysis (PCA) was used to extract and compare movement patterns and the variance in individual body segment positions explained by these patterns. Using the identified patterns, balance outcome measures based on spatiotemporal sway characteristics were computed. The results showed that both Vicon and Kinect capture >90% variance of all body segment movements within three PCs. Kinect-derived movement patterns were found to explain variance in trunk movements accurately, yet explained variance in hand and foot segments was underestimated and overestimated respectively by as much as 30%. Differences between both systems with respect to balance outcome measures range 0.3–64.3%. The results imply that Kinect provides the unique possibility of quantifying balance ability while performing complex tasks in an exergame environment.  相似文献   
7.
Recently, a modular organisation has been proposed to simplify control of the large number of muscles involved in human walking. Although previous research indicates that a single set of modular activation patterns can account for muscle activity at different speeds, these studies only provide indirect evidence for the idea that speed regulation in human walking is under modular control. Here, a more direct approach was taken to assess the synergistic structure that underlies speed regulation, by isolating speed effects through the construction of gain functions that represent the linear relation between speed and amplitude for each point in the time-normalized gait cycle. The activity of 13 muscles in 13 participants was measured at 4 speeds (0.69, 1.00, 1.31, and 1.61 ms-1) during treadmill walking. Gain functions were constructed for each of the muscles, and gain functions and the activity patterns at 1.00 ms-1 were both subjected to dimensionality reduction, to obtain modular gain functions and modular basis functions, respectively. The results showed that 4 components captured most of the variance in the gain functions (74.0% ± 1.3%), suggesting that the neuromuscular regulation of speed is under modular control. Correlations between modular gain functions and modular basis functions (range 0.58–0.89) and the associated synergistic muscle weightings (range 0.6–0.95) were generally high, suggesting substantial overlap in the synergistic control of the basic phasing of muscle activity and its modulation through speed. Finally, the combined set of modular functions and associated weightings were well capable of predicting muscle activity patterns obtained at a speed (1.31 ms-1) that was not involved in the initial dimensionality reduction, confirming the robustness of the presently used approach. Taken together, these findings provide direct evidence of synergistic structure in speed regulation, and may inspire further work on flexibility in the modular control of gait.  相似文献   
8.
The fungus Aspergillus fumigatus is a leading infectious killer in immunocompromised patients. Calcineurin, a calmodulin (CaM)-dependent protein phosphatase comprised of calcineurin A (CnaA) and calcineurin B (CnaB) subunits, localizes at the hyphal tips and septa to direct A. fumigatus invasion and virulence. Here we identified a novel serine-proline rich region (SPRR) located between two conserved CnaA domains, the CnaB-binding helix and the CaM-binding domain, that is evolutionarily conserved and unique to filamentous fungi and also completely absent in human calcineurin. Phosphopeptide enrichment and tandem mass spectrometry revealed the phosphorylation of A. fumigatus CnaA in vivo at four clustered serine residues (S406, S408, S410 and S413) in the SPRR. Mutation of the SPRR serine residues to block phosphorylation led to significant hyphal growth and virulence defects, indicating the requirement of calcineurin phosphorylation at the SPRR for its activity and function. Complementation analyses of the A. fumigatus ΔcnaA strain with cnaA homologs from the pathogenic basidiomycete Cryptococcus neoformans, the pathogenic zygomycete Mucor circinelloides, the closely related filamentous fungi Neurospora crassa, and the plant pathogen Magnaporthe grisea, revealed filamentous fungal-specific phosphorylation of CnaA in the SPRR and SPRR homology-dependent restoration of hyphal growth. Surprisingly, circular dichroism studies revealed that, despite proximity to the CaM-binding domain of CnaA, phosphorylation of the SPRR does not alter protein folding following CaM binding. Furthermore, mutational analyses in the catalytic domain, CnaB-binding helix, and the CaM-binding domains revealed that while the conserved PxIxIT substrate binding motif in CnaA is indispensable for septal localization, CaM is required for its function at the hyphal septum but not for septal localization. We defined an evolutionarily conserved novel mode of calcineurin regulation by phosphorylation in filamentous fungi in a region absent in humans. These findings suggest the possibility of harnessing this unique SPRR for innovative antifungal drug design to combat invasive aspergillosis.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号