首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   3篇
  98篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   1篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   7篇
  2014年   3篇
  2013年   5篇
  2012年   12篇
  2011年   8篇
  2010年   5篇
  2009年   5篇
  2008年   7篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
  1987年   1篇
  1982年   1篇
  1976年   1篇
  1957年   1篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
1.
Laha S  Petrova KP 《Biodegradation》1997,8(5):349-356
The Everglades in South Florida are a unique ecological system. As a result of the widespread use of pesticides and herbicides in agricultural areas upstream from these wetlands, there is a serious potential for pollution problems in the Everglades. The purpose of this study was to evaluate the ability of indigenous microbial populations to degrade xenobiotic organic compounds introduced by agricultural and other activities. Such biodegradation may facilitate the remediation of contaminated soils and water in the Everglades. The model compound selected in this study is 4-nitrophenol, a chemical commonly used in the manufacture of pesticides. The mineralization of 4-nitrophenol at various concentrations was studied in soils collected from the Everglades. At concentrations of 10 and 100 microg/g soil, considerable mineralization occurred within a week. At a higher concentration, i.e., 10 mg/g soil, however, no mineralization of 4-nitrophenol occurred over a 4-month period; such a high concentration apparently produced an inhibitory effect. The rate and extent of 4-nitrophenol mineralization was enhanced on inoculation with previously isolated nitrophenol-degrading microorganisms. The maximum mineralization extent measured, however, was less than 30% suggesting conversion to biomass and/or unidentified intermediate products. These results indicate the potential for natural mechanisms to mitigate the adverse effects of xenobiotic pollutants in a complex system such as the Everglades.  相似文献   
2.
The solubilization and mineralization of (14)C-phenanthrene in soil-water systems was examined with several commercially available surface-active agents, viz., an alkyl ethoxylate C(12)E(4); two alkylphenol ethoxylate surfactants: C(8)PE(9.5) and C(9)PE(10.5); two sorbitan ethoxylate surfactants: the sorbitan monolaurate (Tween 20) and the sorbitan monooleate (Tween 80); two pairs of nonionic ethoxylate surfactant mixtures: C(12)E(4)/C(12)E(23) at a 1:1 ratio, and C(12-15)E(3)/C(12-15)E(9) at a 1:3 ratio; and two surfactants possessing relatively high critical micelle concentration (CMC) values and low aggregation numbers: CHAPS and octyglucoside. Surface tension experiments were performed to evaluate surfactant sorption onto soil and the surfactant doses required to attain the CMC in the soil-water systems. Surfactant solubilization of (14)C-phenanthrene commenced with the onset of micellization. The addition of surface-active agents was observed not to be beneficial to the microbial mineralization of phenanthrene in the soil-water systems and, for supra-CMC surfactant doses, phenanthrene mineralization was completely inhibited for all the surfactants tested. A comparison of solubilization, surface tension, and mineralization data confirms that the inhibitory effect on microbial degradation of phenanthrene is related to the CMC of the surfactant in the presence of soil. Additional tests demonstrated the recovery of mineralization upon dilution of surfactant concentration to sub-CMC levels, and a relatively high exit rate for phenanthrene from micelles. These tests suggest that the inhibitory effect is probably related to a reversible physiological surfactant micelle-bacteria interaction, possibly through partial complexing or release of membrane material with disrupting membrane lamellar structure. This study indicates that nonionic surfactant solubilization of sorbed hydrophobic organic compounds from soil may not be beneficial for the concomitant enhancement of soil bioremediation. Additional work is needed to address physicochemical processes for bioavailability enhancement, and effects of solubilizing agents on microorganisms for remediation and treatment of hydrophobic organic compounds and nonaqueous phase liquids. (c) 1992 John Wiley & Sons Inc.  相似文献   
3.
4.
5.
Highly fluorescent nitrogen and phosphorus‐doped carbon dots with a quantum yield 59% have been successfully synthesized from citric acid and di‐ammonium hydrogen phosphate by single step hydrothermal method. The synthesized carbon dots have high solubility as well as stability in aqueous medium. The as‐obtained carbon dots are well monodispersed with particle sizes 1.5–4 nm. Owing to a good tunable fluorescence property and biocompatibility, the carbon dots were applied for intercellular sensing of Fe3+ ions as well as cancer cell imaging. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
6.
Krüppel‐like factor 2 (KLF2) critically regulates activation and function of monocyte, which plays important pathogenic role in progressive joint destruction in rheumatoid arthritis (RA). It is yet to be established the molecular basis of KLF2‐mediated regulation of monocytes in RA pathogenesis. Herein, we show that a class of compound, HDAC inhibitors (HDACi) induced KLF2 expression in monocytes both in vitro and in vivo. KLF2 level was also elevated in tissues, such as bone marrow, spleen and thymus in mice after infusion of HDACi. Importantly, HDACi significantly reduced osteoclastic differentiation of monocytes with the up‐regulation of KLF2 and concomitant down‐regulation of matrixmetalloproteinases both in the expression level as well as in the protein level. In addition, HDACi reduced K/BxN serum‐induced arthritic inflammation and joint destruction in mice in a dose‐dependent manner. Finally, co‐immunoprecipitation and overexpression studies confirmed that KLF2 directly interacts with HDAC4 molecule in cells. These findings provide mechanistic evidence of KLF2‐mediated regulation of K/BxN serum‐induced arthritic inflammation.  相似文献   
7.
8.

Background

The unmitigated rise in demand for the assessment of vitamin D status has taxed the ability of clinical mass spectrometry laboratories to preserve turn-around times. We aimed to improve the throughput of liquid–liquid extraction of plasma/serum for the assay of 25-hydroxy vitamin D.

Methods

We designed and fabricated a flexible rubber gasket that seals two 96-well plates together to quantitatively transfer the contents of one plate to another. Using the transfer gasket and a dry-ice acetone bath to freeze the aqueous infranatant, we developed a novel liquid–liquid extraction workflow in a 96-well plate format. We applied the technology to the mass spectrometric quantification of 25-hydroxy vitamin D.

Results

Cross-contamination between wells was ≤0.13%. The interassay imprecision over 132 days of clinical implementation was less than 10%. The method compared favorably to a standard liquid–liquid extraction in glass tubes (Deming slope = 1.018, Sx|y = 0.022). The accuracy of the assay was 102–105% as assessed with the recently released control materials from NIST.

Conclusions

The development of a plate-sealing gasket permits the liquid–liquid extraction of clinical specimens in a moderate-throughput workflow and the reliable assay of vitamin D status. In the future, the gasket may also prove useful in other sample preparation techniques for HPLC or mass spectrometry.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号