首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2021年   1篇
  2014年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Iron (Fe) is widely suspected as a key controlling factor of N2 fixation due to the high Fe content of nitrogenase and photosynthetic enzymes complex, and to its low concentrations in oceanic surface seawaters. The influence of Fe limitation on the recently discovered unicellular diazotrophic cyanobacteria (UCYN) is poorly understood despite their biogeochemical importance in the carbon and nitrogen cycles. To address this knowledge gap, we conducted culture experiments on Crocosphaera watsonii WH8501 growing under a range of dissolved Fe concentrations (from 3.3 to 403 nM). Overall, severe Fe limitation led to significant decreases in growth rate (2.6-fold), C, N and chlorophyll a contents per cell (up to 4.1-fold), N2 and CO2 fixation rates per cell (17- and 7-fold) as well as biovolume (2.2-fold). We highlighted a two phased response depending on the degree of limitation: (i) under a moderate Fe limitation, the biovolume of C. watsonii was strongly reduced, allowing the cells to keep sufficient energy to maintain an optimal growth, volume-normalized contents and N2 and CO2 fixation rates; (ii) with increasing Fe deprivation, biovolume remained unchanged but the entire cell metabolism was affected, as shown by a strong decrease in the growth rate, volume-normalized contents and N2 and CO2 fixation rates. The half-saturation constant for growth of C. watsonii with respect to Fe is twice as low as that of the filamentous Trichodesmium indicating a better adaptation of C. watsonii to poor Fe environments than filamentous diazotrophs. The physiological response of C. watsonii to Fe limitation was different from that previously shown on the UCYN Cyanothece sp, suggesting potential differences in Fe requirements and/or Fe acquisition within the UCYN community. These results contribute to a better understanding of how Fe bioavailability can control the activity of UCYN and explain the biogeography of diverse N2 fixers in ocean.  相似文献   
2.
Urea regeneration by size-fractionated plankton was measuredover an annual cycle at a coastal station in the permanentlywell-mixed waters of the western English Channel. Rates of urearegeneration in the <200 µm fraction varied from 0.6to 20.6 nmol N L–1 h–1. Regeneration rates werelowest in winter and highest in summer. The ratio of the ratesof regeneration to uptake of urea was close to 1 on all time(seasonal and nycthemeral), and space (vertical) scales indicatingthat regeneration by microheterotrophs supplied the totalityof urea used by phytoplankton. On an annual basis, urea regeneratedby the microheterotrophs (0.98 mol N m–2 year–1)was equivalent to 33% of the total regenerated N (urea + ammonium).The major part of urea regeneration was due to the nanoplankton(51%) and microplankton fractions (36%). Regeneration of ureain the picoplankton was detectable only from April to Octoberand represented, on an average, 25% of the total urea regeneratedduring this period. Urea regeneration in micro- and nanoplanktonfractions was mainly associated with ciliates and in the picoplanctonfraction with bacteria.  相似文献   
3.
Nitrogen uptake by net- (15–200 µm), nano- (1–15µm) and picoplankton (<1 µm) was measured overseasonal cycles at two stations with different patterns of biologicaland chemical cycles in the Morlaix Bay (western English Channel).Though assimilable dissolved N nutrient pool at both stationswas nitrate-dominated, characteristics of biomass and N uptakeby netplankton differed from conventional patterns in two respects.In the first, biomass (26–30%) and N uptake (36–43%)were less important than those of nanoplankton. In the second,the netplankton did not show any marked preference for nitrateover ammonium (nitrate to ammonium uptake ratios of 0.98 and1.08). In contrast, nanoplankton had a preference for ammoniumover nitrate (ammonium to nitrate uptake ratios of 2 and 1.2).N uptake by picoplankton was only 8% of total N uptake at bothstations and was supported mainly by regenerated N (66% ammoniumand 17% urea), with nitrate uptake detectable in only one instanceand nitrite uptake in none. Substrate-dependent uptake of ammoniumin all fractions and a higher ammonium uptake in the nanoplanktonfraction in summer at both stations when ambient ammonium concentrationswere high indicated that while nitrate may satisfy a part ofN requirements, availability of ammonium and its flux throughnanoplankton determine the magnitude of total N uptake in thesewaters. Most of the N uptake in picoplankton appears to be autotrophic,suggesting that a substantial part of heterotrophic uptake,if any, could be localized in the fractions >1 µm,and mediated by free-living and particle-bound bacteria.  相似文献   
4.
Uptake and assimilation kinetics of nitrate and ammonium were investigated along with inhibition of nitrate uptake by ammonium in the harmful dinoflagellate Alexandrium minutum Halim at different nitrogen (N)–limited growth rates. Alexandrium minutum had a strong affinity for nitrate and ammonium (Ks=0.26±0.03 and 0.31±0.04 μmol·L?1, respectively) whatever the degree of N deficiency of the cells. Ammonium was always the preferred form of nitrogen taken up (=0.42–0.50). In the presence of both forms, nitrate uptake was inhibited by ammonium, and inhibition was particularly marked in N‐sufficient cells (Imax~0.9 and Ki=0.31–0.56 μmol·L?1). In the case of N assimilation, ammonium was also the preferred form in N‐deficient cells (=0.54–0.72), whereas in N‐sufficient cells, both N sources were equally preferred (=0.90–1.00). The comparison of uptake and assimilation rates highlighted the ability of A. minutum to significantly store in 1 h nitrate and ammonium in amounts sufficient to supply twice the daily N requirements of the slowest‐growing N‐deficient cells. Nitrogen uptake kinetic parameters of A. minutum and their ecological implications are discussed.  相似文献   
5.
Biofilms of heterotrophic bacteria cover organic matter aggregates and constitute hotspots of mineralization, primarily acting through extracellular hydrolytic enzyme production. Nevertheless, regulation of both biofilm and hydrolytic enzyme synthesis remains poorly investigated, especially in estuarine ecosystems. In this study, various bioassays, mass spectrometry and genomics approaches were combined to test the possible involvement of quorum sensing (QS) in these mechanisms. QS is a bacterial cell–cell communication system that relies notably on the emission of N-acylhomoserine lactones (AHLs). In our estuarine bacterial collection, we found that 28 strains (9%), mainly Vibrio, Pseudomonas and Acinetobacter isolates, produced at least 14 different types of AHLs encoded by various luxI genes. We then inhibited the AHL QS circuits of those 28 strains using a broad-spectrum lactonase preparation and tested whether biofilm production as well as β-glucosidase and leucine-aminopeptidase activities were impacted. Interestingly, we recorded contrasted responses, as biofilm production, dissolved and cell-bound β-glucosidase and leucine-aminopeptidase activities significantly increased in 4%–68% of strains but decreased in 0%–21% of strains. These findings highlight the key role of AHL-based QS in estuarine bacterial physiology and ultimately on biogeochemical cycles. They also point out the complexity of QS regulations within natural microbial assemblages.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号