首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   4篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
排序方式: 共有33条查询结果,搜索用时 31 毫秒
1.
In view of recent studies highlighting the prognostic relevance of expression and CpG island methylator phenotype (CIMP) of Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) in invasive duct cell carcinoma (IDC), we hypothesized in this article that impaired one-carbon metabolism might influence CIMP phenotype of BNIP3. In order to substantiate the prognostic relevance of BNIP3, we explored its association with 8-oxo-2'deoxyguanosine (8-oxodG), a marker of oxidative stress with prognostic relevance. BNIP3 expression and CIMP phenotype were studied using semi-quantitative RT-PCR and combined bisulfite restriction analysis (COBRA), respectively, in 56 IDC tumors. Eight polymorphisms in one-carbon metabolism were studied using PCR-RFLP and PCR-AFLP approaches. 8-oxodG was measured using competitive ELISA kit. BNIP3 was found to be upregulated in IDC (cases vs. controls: 0.94 ± 0.05 vs. 0.18 ± 0.08, P < 0.0001). COBRA analysis confirmed hypomethylation of BNIP3 promoter CpG island in these cases. CIMP phenotype of BNIP3 showed positive association with tubule formation (P = 0.034) and methionine synthase reductase (MTRR) A66G (P = 0.002); inverse association with cytosolic serine hydroxyl methyltransferase (cSHMT) C1420T (P < 0.005) and 8-oxodG (<10% vs. >10% methylation: 7.24 ± 2.77 ng/ml vs. 4.42 ± 2.93 ng/ml, P < 0.0005); and no association with nuclear pleomorphism or mitotic index or ER, PR, and HER statuses. Synergistic effect of MTR A2756G and MTRR A66G variants on BNIP3 hypermethylator phenotype was clearly evident (P < 0.0007). MTRR A66G and cSHMT C1420T polymorphisms influence CIMP phenotype of BNIP3, thus epigenetically regulating BNIP3 in breast cancer. The linear association between BNIP3 and 8-oxodG substantiates the role of BNIP3 as redox sensor as well as prognostic marker in breast cancer.  相似文献   
2.
Trimetazidine, the known anti-anginal and anti-ischemic drug, was modified by pyrroline and tetrahydropyridine nitroxides and their hydroxylamine and sterically hindered secondary amine precursors. The synthesized new compounds proved to be better superoxide scavenger molecules compared to the parent Trimetazidine in an in vitro experiment. This reactive oxygen species (ROS) scavenging activity was further supported by ischemia/reperfusion (I/R) studies on Langendorff-perfused rat hearts pretreated with Trimetazidine and with the modified Trimetazidine derivatives before ischemia. Two of the investigated compounds, containing 2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrole and 4-phenyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrole substituents on the piperazine ring, provided significant protection from the cardiac dysfunction caused by I/R. The protective effect could be attributed to the combined anti-ischemic and antioxidant effects.  相似文献   
3.
Oxygen consumption rate (OCR) and generation of superoxide and nitric oxide (NO) in mouse aortic endothelial cells (MAECs) treated with lipopolysaccharide (LPS) were studied. The OCR was determined in cell suspensions at 37 °C by electron paramagnetic resonance (EPR) spectroscopy. LPS significantly altered the OCR in a dose and time-dependent fashion. The OCR was significantly elevated immediately following the treatment of MAECs with LPS (5 and 10 μg/ml) and NADPH (100 μM) whereas the same was depressed 1 h after exposure to similar conditions of incubation. Under similar experimental conditions, superoxide generation was also determined by EPR spectroscopy and cytochrome c reduction assays. A marginal increase in the superoxide production was observed when the cells were treated with LPS and NADPH alone whereas the same was further enhanced significantly when the cells were treated with LPS and NADPH together. The increase in oxygen consumption and superoxide production caused by LPS was inhibited by diphenyleneiodonium (DPI), suggesting the involvement of NAD(P)H oxidase. A significant increase in the NO production by MAECs was noticed 1 h after treatment with LPS and was inhibited by L-NAME, further suggesting the involvement of nitric oxide synthase (NOS). Thus, on a temporal scale, LPS-induced alterations in oxygen consumption by MAECs may be under the control of dual regulation by NAD(P)H oxidase and NOS. (Mol Cell Biochem 278: 119–127, 2005)  相似文献   
4.
5.
The purpose of the present study was to demonstrate the contribution of pulmonary-generated reactive oxygen species (ROS) on cardiac dysfunction using a rat model of ischemia–reperfusion (IR) injury. Three groups of rats were subjected to regional IR injury in (i) lung, (ii) heart, (iii) lung + heart. A fourth (control) group of rats were instrumented using the same methods but without induction IR. Hemodynamic data were recorded in real time. Blood from the proximal aorta was sampled during baseline, ischemia, and reperfusion, mixed with α-phenyl-N-tert-butylnitrone (PBN) for measuring ROS by electron paramagnetic resonance spectrometry. Data were analyzed by a two-way analysis of variance. The results showed that the lung IR generated an increased burst of ROS that resulted in significant cardiac dysfunction, including hypotension and ECG changes. The results indicated that generation of ROS as a result of acute IR lung injury may be sufficiently large enough to cause direct cardiac dysfunction that is independent of injury caused to the myocardium as a result of regional myocardial IR injury alone.  相似文献   
6.
7.
8.
We report the labeling (internalization) of skeletal myoblasts (SMs) with a novel class of oxygen-sensing paramagnetic spin probe for noninvasive tracking and in situ monitoring of oxygenation in stem cell therapy using electron paramagnetic resonance (EPR) spectroscopy. SM cells were isolated from thigh muscle biopsies of mice and propagated in culture. Labeling of SM cells with the probe was achieved by coincubating the cells with submicron-sized (270 +/- 120 nm) particulates of the probe in culture for 48 h. The labeling had no significant effect on the viability or proliferation of the cells. The SM cells labeled with the probe were transplanted in the infarcted region of mouse hearts. The engraftment of the transplanted cells in the infarct region was verified by using MY-32 staining for skeletal myocytes. The in situ Po(2) in the heart was determined noninvasively and repeatedly for 4 wk after transplantation. The results showed significant enhancement of myocardial oxygenation at the site of cell transplant compared with untreated control. In conclusion, labeling of SM cells with the oxygen-sensing spin probe offers a unique opportunity for the noninvasive monitoring of transplanted cells as well as in situ tissue Po(2) in infarcted mouse hearts.  相似文献   
9.
Our recent study showing association of hyperhomocysteinemia and hypomethioninemia in breast cancer and other studies indicating association of hyperhomocysteinemia with metastasis and development of drug resistance in breast cancer cells treated with homocysteine lead us to hypothesize that homocysteine might modulate the expression of certain tumor suppressors, i.e., RASSF1, RARβ1, CNND1, BRCA1, and p21, and might influence prognostic markers such as BNIP3 by inducing epigenetic alteration. To demonstrate this hypothesis, we have treated MCF-7 and MDA-MB-231 cells with different doses of homocysteine and observed dose-dependent inhibition of BRCA1 and RASSF1, respectively. In breast cancer tissues, we observed the following expression pattern: BNIP3 > BRCA1 > RARβ1 > CCND1 > p21 > RASSF1. Hyperhomocysteinemia was positively associated with BRAC1 hypermethylation both in breast cancer tissue and corresponding peripheral blood. Peripheral blood CpG island methylation of BRCA1 in all types of breast cancer and methylation of RASSF1 in ER/PR-negative breast cancers showed positive correlation with total plasma homocysteine. The methylation of RASSF1 and BRCA1 was associated with breast cancer initiation as well as progression, while BRCA1 methylation was associated with DNA damage. Vitamin B12 showed inverse association with the methylation at both the loci. RFC1 G80A and cSHMT C1420T variants showed positive association with methylation at both the loci. Genetic variants influencing remethylation step were associated positively with BRCA1 methylation and inversely with RASSF1 methylation. GCPII C1561T variant showed inverse association with BRCA1 methylation. We found good correlation of BRAC1 (r = 0.90) and RASSF1 (0.92) methylation pattern between the breast cancer tissue and the corresponding peripheral blood. To conclude, elevated homocysteine influences methionine dependency phenotype of breast cancer cells and is associated with breast cancer progression by epigenetic modulation of RASSF1 and BRCA1 .  相似文献   
10.
Molecular Biology Reports - In view of high mortality associated with coronary artery disease (CAD), development of an early predicting tool will be beneficial in reducing the burden of the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号