首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2015年   1篇
  2008年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Regulatory mechanisms in mucosal secretions and tissues recognize antigens and attenuate pro-inflammatory cytokine responses. Here, we asked whether human beta-defensin 3 (HBD3) serves as an upstream suppressor of cytokine signaling that binds and attenuates pro-inflammatory cytokine responses to recombinant hemagglutinin B (rHagB), a non-fimbrial adhesin from Porphyromonas gingivalis strain 381. We found that HBD3 binds to immobilized rHagB and produces a significantly higher resonance unit signal in surface plasmon resonance spectroscopic analysis, than HBD2 and HBD1 that are used as control defensins. Furthermore, we found that HBD3 significantly attenuates (P<0.05) the interleukin (IL)-6, IL-10, granulocyte macrophage colony stimulating factor (GM-CSF) and tumor-necrosis factor-alpha (TNF-alpha) responses induced by rHagB in human myeloid dendritic cell culture supernatants and the extracellular signal-regulated kinases (ERK 1/2) response in human myeloid dendritic cell lysates. Thus, HBD3 binds rHagB and this interaction may be an important initial step to attenuate a pro-inflammatory cytokine response and an ERK 1/2 response.  相似文献   
2.
Tumor cells stimulate natural killer (NK) cell effector functions, but the regulation of cytokine secretion and cytolysis is incompletely understood. We tested whether oral and pharyngeal squamous cell carcinoma cell lines differentially stimulated NK cell interferon-gamma (IFN-gamma) secretion and cytolysis using a clone of the NK-92-transformed human NK cell line, NK92.35. SCC-4 and SCC-25 cells, but not FaDu or Cal 27 cells, stimulated robust NK92.35 IFN-gamma secretion. All four carcinoma cell lines were lysed by NK92.35 cells. These findings indicate that carcinoma cells differentially stimulate NK cell IFN-gamma secretion and cytolysis. In Transwell experiments, a combination of SCC-4 or SCC-25 cell soluble factors and contact with FaDu cells synergistically stimulated NK92.35 cell IFN-gamma secretion. Stimulatory SCC-4 cells constitutively secreted IL-18, a cytokine that potently augments IFN-gamma secretion by T cells and NK cells. In contrast, poorly stimulatory FaDu cells produced little or no IL-18, but synergized with recombinant IL-18 to stimulate NK92.35 IFN-gamma secretion. mAb to IL-18 or IL-18 receptor diminished SCC-4-stimulated IFN-gamma secretion by NK92.35 cells and by nontransformed NK cells. Thus, IL-18 was necessary for optimal carcinoma stimulation of NK cell IFN-gamma secretion. In vivo, oral and upper aerodigestive tract epithelia and carcinomas produced IL-18, but one squamous cell carcinoma had heterogeneous IL-18 expression. Thus IL-18 production can account for squamous cell carcinoma differential stimulation of NK cell effector functions in vitro and may be important for stimulation of NK cells in vivo.  相似文献   
3.
Microorganisms grow as members of microbial communities in unique niches, such as the mucosal surfaces of the human body. These microbial communities, containing both commensals and opportunistic pathogens, serve to keep individual pathogens 'in check' through a variety of mechanisms and complex interactions, both between the microorganisms themselves and the microorganisms and the host. Recent studies shed new light on the diversity of microorganisms that form the human microbial communities and the interactions these microbial communities have with the host to stimulate immune responses. This occurs through their recognition by dendritic cells or their ability to induce differential cytokine and defensin profiles. The differential induction of defensins by commensals and pathogens and the ability of the induced defensins to interact with the antigens from these microorganisms may attenuate proinflammatory signaling and trigger adaptive immune responses to microbial antigens in a multistep process. Such an activity may be a mechanism that the host uses to sense what is on its mucosal surfaces, as well as to differentiate among commensals and pathogens.  相似文献   
4.
Signaling via pattern recognition receptors (PRRs) expressed on professional antigen presenting cells, such as dendritic cells (DCs), is crucial to the fate of engulfed microbes. Among the many PRRs expressed by DCs are Toll-like receptors (TLRs) and C-type lectins such as DC-SIGN. DC-SIGN is targeted by several major human pathogens for immune-evasion, although its role in intracellular routing of pathogens to autophagosomes is poorly understood. Here we examined the role of DC-SIGN and TLRs in evasion of autophagy and survival of Porphyromonas gingivalis in human monocyte-derived DCs (MoDCs). We employed a panel of P. gingivalis isogenic fimbriae deficient strains with defined defects in Mfa-1 fimbriae, a DC-SIGN ligand, and FimA fimbriae, a TLR2 agonist. Our results show that DC-SIGN dependent uptake of Mfa1+P. gingivalis strains by MoDCs resulted in lower intracellular killing and higher intracellular content of P. gingivalis. Moreover, Mfa1+P. gingivalis was mostly contained within single membrane vesicles, where it survived intracellularly. Survival was decreased by activation of TLR2 and/or autophagy. Mfa1+P. gingivalis strain did not induce significant levels of Rab5, LC3-II, and LAMP1. In contrast, P. gingivalis uptake through a DC-SIGN independent manner was associated with early endosomal routing through Rab5, increased LC3-II and LAMP-1, as well as the formation of double membrane intracellular phagophores, a characteristic feature of autophagy. These results suggest that selective engagement of DC-SIGN by Mfa-1+P. gingivalis promotes evasion of antibacterial autophagy and lysosome fusion, resulting in intracellular persistence in myeloid DCs; however TLR2 activation can overcome autophagy evasion and pathogen persistence in DCs.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号