首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   12篇
  2022年   2篇
  2020年   1篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1991年   1篇
  1989年   3篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1964年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
Epidermal growth factor (EGF) stimulates the turnover of phosphoinositides in A431 cells. In cells that were pretreated with EGF for 30 min at 37 degrees C and then washed to remove surface-bound hormone, a 70-100% decrease in the EGF-stimulated production of inositol monophosphate, inositol bisphosphate, and inositol triphosphate was noted when the cells were exposed to the agonist a second time. Since only a 15% decrease in receptor number was observed in these pretreated cells, the loss of responsiveness to EGF for the production of inositol phosphates could not be attributed to a down-regulation of the EGF receptors. These data suggest that pretreatment of A431 cells with high concentrations of EGF leads to a desensitization of the EGF receptor. This desensitization of the receptor by EGF is apparent within 10-15 min of the addition of EGF and is maximal by 30 min. The desensitization appears to be homologous in nature since pretreatment of cells with EGF did not diminish their responsiveness to bradykinin; and conversely, pretreatment with bradykinin did not diminish the subsequent responsiveness of the cells to EGF. Desensitization to EGF was observed in cells in which protein kinase C had been down-regulated by prolonged treatment with 12-O-tetradecanoylphorbol-13-acetate, implying that EGF receptor desensitization is independent of protein kinase C. The desensitizing effects of EGF on growth factor-induced phosphatidylinositol turnover could be prevented by pretreatment of the cells with the calmodulin antagonist trifluoperazine, suggesting that calmodulin may be involved in the regulation of EGF receptor sensitivity.  相似文献   
2.
We have previously described two replication-competent adenovirus vectors, named KD1 and KD3, for potential use in cancer gene therapy. KD1 and KD3 have two small deletions in the E1A gene that restrict efficient replication of these vectors to human cancer cell lines. These vectors also have increased capacity to lyse cells and spread from cell to cell because they overexpress the adenovirus death protein, an adenovirus protein required for efficient cell lysis and release of adenovirus from the cell. We now describe a new vector, named KD1-SPB, which is the KD1 vector with the E4 promoter replaced by the promoter for surfactant protein B (SPB). SPB promoter activity is restricted in the adult to type II alveolar epithelial cells and bronchial epithelial cells. Because KD1-SPB has the E1A mutations, it should replicate within and destroy only alveolar and bronchial cancer cells. We show that KD1-SPB replicates, lyses cells, and spreads from cell to cell as well as does KD1 in H441 cells, a human cancer cell line where the SPB promoter is active. KD1-SPB replicates, lyses cells, and spreads only poorly in Hep3B liver cancer cells. Replication was determined by expression of the E4ORF3 protein, viral DNA accumulation, fiber synthesis, and virus yield. Cell lysis and vector spread were measured by lactate dehydrogenase release and a "vector spread" assay. In addition to Hep3B cells, KD1-SPB also did not express E4ORF3 in HT29.14S (colon), HeLa (cervix), KB (nasopharynx), or LNCaP (prostate) cancer cell lines, in which the SPB promoter is not expected to be active. Following injection into H441 or Hep3B tumors growing in nude mice, KD1-SPB caused a three- to fourfold suppression of growth of H441 tumors, similar to that seen with KD1. KD1-SPB had only a minimal effect on the growth of Hep3B tumors, whereas KD1 again caused a three- to fourfold suppression. These results establish that the adenovirus E4 promoter can be replaced by a tissue-specific promoter in a replication-competent vector. The vector has three engineered safety features: the tissue-specific promoter, the mutations in E1A that preclude efficient replication in nondividing cells, and a deletion of the E3 genes which shield the virus from attack by the immune system. KD1-SPB may have use in treating human lung cancers in which the SPB promoter is active.  相似文献   
3.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis through two receptors, TRAIL-R1 (also known as death receptor 4) and TRAIL-R2 (also known as death receptor 5), that are members of the TNF receptor superfamily of death domain-containing receptors. We show that human adenovirus type 5 encodes three proteins, named RID (previously named E3-10.4K/14.5K), E3-14.7K, and E1B-19K, that independently inhibit TRAIL-induced apoptosis of infected human cells. This conclusion was derived from studies using wild-type adenovirus, adenovirus replication-competent mutants that lack one or more of the RID, E3-14.7K, and E1B-19K genes, and adenovirus E1-minus replication-defective vectors that express all E3 genes, RID plus E3-14.7K only, RID only, or E3-14.7K only. RID inhibits TRAIL-induced apoptosis when cells are sensitized to TRAIL either by adenovirus infection or treatment with cycloheximide. RID induces the internalization of TRAIL-R1 from the cell surface, as shown by flow cytometry and indirect immunofluorescence for TRAIL-R1. TRAIL-R1 was internalized in distinct vesicles which are very likely to be endosomes and lysosomes. TRAIL-R1 is degraded, as indicated by the disappearance of the TRAIL-R1 immunofluorescence signal. Degradation was inhibited by bafilomycin A1, a drug that prevents acidification of vesicles and the sorting of receptors from late endosomes to lysosomes, implying that degradation occurs in lysosomes. RID was also shown previously to internalize and degrade another death domain receptor, Fas, and to prevent apoptosis through Fas and the TNF receptor. RID was shown previously to force the internalization and degradation of the epidermal growth factor receptor. E1B-19K was shown previously to block apoptosis through Fas, and both E1B-19K and E3-14.7K were found to prevent apoptosis through the TNF receptor. These findings suggest that the receptors for TRAIL, Fas ligand, and TNF play a role in limiting virus infections. The ability of adenovirus to inhibit killing through these receptors may prolong acute and persistent infections.  相似文献   
4.
5.
The activity of Src kinases appears to play a role in both assembly and disassembly of tight junction. However, the role of a specific isoform of Src kinase in regulation of tight junction is not known. In the present study the role of c-Src in regulation of epithelial tight junction was investigated in Caco-2 cell monolayers. Oxidative stress (xanthine oxidase + xanthine) induced an activation and membrane translocation of c-Src. The oxidative stress-induced decrease in transepithelial electrical resistance, increase in inulin permeability, and redistribution of occludin and ZO-1 from the intercellular junctions were prevented by PP2. The rates of oxidative stress-induced activation of c-Src, tyrosine phosphorylation of ZO-1 and beta-catenin, decrease in resistance, increase in permeability to inulin, and redistribution of occludin and ZO-1 were significantly greater in cells transfected with wild type c-Src, whereas it was low in cells transfected with kinase-inactive c-SrcK297R mutant, when compared with those in empty vector-transfected cells. The rates of recovery of resistance, increase in barrier to inulin, and reorganization of occludin and ZO-1 into the intercellular junctions during the calcium-induced reassembly of tight junction were much greater in Caco-2 cells transfected with c-SrcK297R as compared with those in cells transfected with empty vector or wild type c-Src. These results show that the dominant-negative expression of kinase-inactive c-Src delays the oxidative stress-induced disruption of tight junction and accelerates calcium-induced assembly of tight junction in Caco-2 cells and demonstrate that oxidative stress-induced disruption of tight junction is mediated by the activation of c-Src.  相似文献   
6.
Reactive cardiac fibrosis resulting from chronic pressure overload (PO) compromises ventricular function and contributes to congestive heart failure. We explored whether nonreceptor tyrosine kinases (NTKs) play a key role in fibrosis by activating cardiac fibroblasts (CFb), and could potentially serve as a target to reduce PO-induced cardiac fibrosis. Our studies were carried out in PO mouse myocardium induced by transverse aortic constriction (TAC). Administration of a tyrosine kinase inhibitor, dasatinib, via an intraperitoneally implanted mini-osmotic pump at 0.44 mg/kg/day reduced PO-induced accumulation of extracellular matrix (ECM) proteins and improved left ventricular geometry and function. Furthermore, dasatinib treatment inhibited NTK activation (primarily Pyk2 and Fak) and reduced the level of FSP1 positive cells in the PO myocardium. In vitro studies using cultured mouse CFb showed that dasatinib treatment at 50 nM reduced: (i) extracellular accumulation of both collagen and fibronectin, (ii) both basal and PDGF-stimulated activation of Pyk2, (iii) nuclear accumulation of Ki67, SKP2 and histone-H2B and (iv) PDGF-stimulated CFb proliferation and migration. However, dasatinib did not affect cardiomyocyte morphologies in either the ventricular tissue after in vivo administration or in isolated cells after in vitro treatment. Mass spectrometric quantification of dasatinib in cultured cells indicated that the uptake of dasatinib by CFb was greater that that taken up by cardiomyocytes. Dasatinib treatment primarily suppressed PDGF but not insulin-stimulated signaling (Erk versus Akt activation) in both CFb and cardiomyocytes. These data indicate that dasatinib treatment at lower doses than that used in chemotherapy has the capacity to reduce hypertrophy-associated fibrosis and improve ventricular function.  相似文献   
7.
Ozonolysis of 2-acetoxymethyl-1,5-anhydro-3,4,6-tri-O-benzyl-2-deoxy-D-arabino-hex-1-enitol gave 1-O-acetyl-3,4,6-tri-O-benzyl-4-O-formyl-D-arabino-hex-2-ulose (5). Subsequent hydrolysis and acetylation of 5 provided 1,2-di-O-acetyl-3,4,6-tri-O-benzyl-D-fructofuranose 6 in excellent yield. This methodology allows specific deuteration at C-1 of a protected D-fructofuranose derivative. This approach therefore could serve as [6+1-1] formulation for hexose series inter-conversion, that is, aldohexopyranose to ketohexofuranose.  相似文献   
8.
9.
10.
Members of the nanos gene family are evolutionarily conserved regulators of germ cell development. In several organisms, Nanos protein expression is restricted to the primordial germ cells (PGCs) during early embryogenesis. Here, we investigate the regulation of the Caenorhabditis elegans nanos homolog nos-2. We find that the nos-2 RNA is translationally repressed. In the adult germline, translation of the nos-2 RNA is inhibited in growing oocytes, and this inhibition depends on a short stem loop in the nos-2 3'UTR. In embryos, nos-2 translation is repressed in early blastomeres, and this inhibition depends on a second region in the nos-2 3'UTR. nos-2 RNA is also degraded in somatic blastomeres by a process that is independent of translational repression and requires the CCCH finger proteins MEX-5 and MEX-6. Finally, the germ plasm component POS-1 activates nos-2 translation in the PGCs. A combination of translational repression, RNA degradation, and activation by germ plasm has also been implicated in the regulation of nanos homologs in Drosophila and zebrafish, suggesting the existence of conserved mechanisms to restrict Nanos expression to the germline.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号