首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   8篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   4篇
  2011年   8篇
  2010年   5篇
  2009年   3篇
  2008年   7篇
  2007年   9篇
  2006年   7篇
  2005年   7篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
  1968年   2篇
  1965年   2篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The reactivity of copper (II) compounds with several tetradentate ligands towards some spin-trapping reagents was studied in the presence of hydrogen peroxide. The compounds used in this study are roughly divided into two groups based on the reactivity towards 2,2,6,6-tetramethyl-4-piperidinol (and also 2,2,6,6-tetramethyl-4-piperidone), which are trapping agents for singlet oxygen. 1O2(1deltag); The A-group compounds exhibited a high activity to form the corresponding nitrone radical, which was detected by ESR spectroscopy, but corresponding activity of the B-group compounds was very low. The A-group compounds defined as above exhibited high activity for cleavage of DNA (supercoiled) Form I) in the presence of hydrogen peroxide, yielding DNA Form II (relaxed circular) or Form III (linear duplex) under our experimental conditions ([Cu (II)] = 0.1 approximately 0.5 mM). On the other hand, the B-group compounds effected complete degradation of the DNA (double-strand scission) under the same experimental conditions, formation of Form II or Form III DNA was negligible. Two different DNA cleavage patterns observed for A- and B-group compounds were elucidated by the different structural property of the copper (II)-peroxide adducts, which is controlled by the interaction through both DNA and the peripheral group of the ligand system.  相似文献   
6.
7.
Platelets play an important role in hemostasis, thrombosis, and antimicrobial host defense and are also involved in the induction of inflammation, tissue repair, and tumor metastasis. We have previously characterized the platelet aggregation-inducing sialoglycoprotein (Aggrus/gp44) overexpressed on the surface of tumor cells. Because a platelet aggregation-neutralizing 8F11 monoclonal antibody that could specifically recognize Aggrus suppressed tumor-induced platelet aggregation, we have previously purified Aggrus by 8F11-affinity chromatography and found that purified Aggrus possessed the ability to induce aggregation of platelets. Here we show that Aggrus is identical to the T1alpha/gp38P/OTS-8 antigen, the function of which in tumors is unknown. Expression of mouse Aggrus and its human homologue (also known as T1alpha-2/gp36) induced platelet aggregation without requiring plasma components. Using the 8F11 antibody, we identified the highly conserved platelet aggregation-stimulating domain with putative O-glycosylated threonine residues as the critical determinant for exhibiting platelet aggregation-inducing capabilities. We compared the expression level of human aggrus mRNA using an array containing 160 cDNA pair samples derived from multiple human tumorigenic and corresponding normal tissues from individual patients. We found that expression level of aggrus was enhanced in most colorectal tumor patients. To confirm the protein expression, we generated anti-human Aggrus polyclonal antibodies. Immunohistochemical analysis revealed that Aggrus expression was frequently up-regulated in colorectal tumors. These results suggest that Aggrus/T1alpha is a newly identified, platelet aggregation-inducing factor expressed in colorectal tumors.  相似文献   
8.
The handling of hepatocytes, a major cell population in the liver, is an important technique in both liver tissue engineering and hepatology. However, these cells are so fragile that it has been impossible to harvest hepatocytes with high viability from tissue culture dishes after a period of culture in vitro. In this study, we employed an artificial substrate for transfection of multilayer hepatocytes and harvested these cells with high viability after transfection. Hepatocytes cultured on an amphiphilic artificial substrate form multilayer aggregates (spheroids) in the presence of growth factors during gene transfection with cation liposomes. Compared to cells cultured on a collagen-coated plate, these spheroids are easily harvested with high viability by pipetting in EDTA solution. In addition, these spheroids rapidly spread on collagen after transfer from the artificial substrate, demonstrating that hepatocytes in the center of the spheroids were viable. Epidermal growth factor (EGF) increased the transfection efficiency into hepatocytes while hepatocyte growth factor (HGF) alone did not increase the efficiency. However, HGF synergestically increased the effect of EGF on transfection. Interestingly, this transfection required the process of spheroid formation because the gene was not transfected once the spheroid formation completed or under conditions where hepatocytes did not form spheroids. This method using spheroidal hepatocytes for in vitro transfection is promising for the development of ex vivo gene therapy.  相似文献   
9.
Although in vitro replication of the hepatitis C virus (HCV) JFH1 clone of genotype 2a (HCVcc) has been developed, a robust cell culture system for the 1a and 1b genotypes, which are the most prevalent viruses in the world and resistant to interferon therapy, has not yet been established. As a surrogate virus system, pseudotype viruses transiently bearing HCV envelope proteins based on the vesicular stomatitis virus (VSV) and retrovirus have been developed. Here, we have developed a replication-competent recombinant VSV with a genome encoding unmodified HCV E1 and E2 proteins in place of the VSV envelope protein (HCVrv) in human cell lines. HCVrv and a pseudotype VSV bearing the unmodified HCV envelope proteins (HCVpv) generated in 293T or Huh7 cells exhibited high infectivity in Huh7 cells. Generation of infectious HCVrv was limited in some cell lines examined. Furthermore, HCVrv but not HCVpv was able to propagate and form foci in Huh7 cells. The infection of Huh7 cells with HCVpv and HCVrv was neutralized by anti-hCD81 and anti-E2 antibodies and by sera from chronic HCV patients. The infectivity of HCVrv was inhibited by an endoplasmic reticulum alpha-glucosidase inhibitor, N-(n-nonyl) deoxynojirimycin (Nn-DNJ), but not by a Golgi mannosidase inhibitor, deoxymannojirimycin. Focus formation of HCVrv in Huh7 cells was impaired by Nn-DNJ treatment. These results indicate that the HCVrv developed in this study can be used to study HCV envelope proteins with respect to not only the biological functions in the entry process but also their maturation step.  相似文献   
10.
Nakajima K  Kunita J 《Uirusu》2005,55(1):115-125
The first outbreak of red sea bream iridoviral disease caused by red sea bream iridovirus (RSIV) was recorded in cultured red sea bream Pagrus major in Shikoku Island, Japan in 1990. Since 1991, the disease has caused mass mortalities of cultured marine fishes not only red sea bream but also many other species. The affected fish were lethargic and exhibited severe anemia, petechiae of the gills, and enlargement of the spleen. The causative agent was a large, icosahedral, cytoplasmic DNA virus classified as a member of the family Iridoviridae and was designated as red sea bream iridovirus (RSIV). The genome of RSIV is liner dsDNA and considered to be circularly permitted and terminally redundant like other iridoviruses. The length of physical map of RSIV genome is 112,415bp. An indirect immunofluorescence test with a monoclonal antibody and PCR are commonly used for the rapid diagnosis of RSIV infected fish in the field. For the control of this disease, a formalin-killed vaccine against red sea bream iridoviral disease was developed and now commercially available.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号