首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22064篇
  免费   1931篇
  国内免费   1883篇
  2024年   35篇
  2023年   266篇
  2022年   577篇
  2021年   1063篇
  2020年   785篇
  2019年   907篇
  2018年   914篇
  2017年   678篇
  2016年   938篇
  2015年   1383篇
  2014年   1650篇
  2013年   1738篇
  2012年   2137篇
  2011年   1957篇
  2010年   1221篇
  2009年   976篇
  2008年   1208篇
  2007年   1128篇
  2006年   917篇
  2005年   839篇
  2004年   688篇
  2003年   513篇
  2002年   498篇
  2001年   398篇
  2000年   324篇
  1999年   288篇
  1998年   172篇
  1997年   150篇
  1996年   162篇
  1995年   129篇
  1994年   119篇
  1993年   89篇
  1992年   141篇
  1991年   91篇
  1990年   96篇
  1989年   84篇
  1988年   66篇
  1987年   64篇
  1986年   52篇
  1985年   55篇
  1984年   34篇
  1983年   31篇
  1982年   33篇
  1981年   27篇
  1979年   31篇
  1978年   24篇
  1977年   25篇
  1976年   29篇
  1975年   20篇
  1974年   20篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
1. Species interactions in tightly bound ecological mutualisms often feature highly specialised species' roles in which competitive exclusion may preclude multi‐species coexistence. Among the 800 fig (Ficus) species, it was originally considered that each was pollinated by their own wasp (Agaonidae). However, recent investigations show that this ‘one‐to‐one’ rule often breaks down, as fig species regularly host multiple agaonids but in ways suggesting that competitive processes still mediate biodiversity outcomes. 2. A phenological survey was conducted of the fig–fig wasp pair, Ficus microcarpa and its associated pollinating wasp, alongside its sister species, the cheating wasp, in Xishuangbanna, China. 3. Reproductive output underwent extreme seasonal variation. Seed and pollinator production fell markedly during cooler, drier months, although high levels of fig production continued. However, this resource was predominantly utilised by the cheater species, which offers no pollination services. Pollinators and cheaters rarely co‐occur, suggesting that temporal coexistence is constrained by competition for access to figs. 4. The overall findings indicate periodic rearrangements of mutualism dynamics, probably resulting from a strongly seasonal environment. Sympatric co‐occurrence may result from a window of opportunity for a functionally divergent agaonid, potentially due to constraints on the main pollinator in adapting to variable year‐round conditions that prevent competitive exclusion.  相似文献   
2.
Many studies have examined the association between the FABP2 (rs1799883) Ala54Thr gene polymorphism and type 2 diabetes mellitus risk (T2DM) in various populations, but their results have been inconsistent. To assess this relationship more precisely, A HuGE review and meta‐analysis were performed. The PubMed and CNKI database was searched for case‐control studies published up to April 2014. Data were extracted and pooled odds ratios (OR) with 95% confidence intervals (CI) were calculated. Ultimately, 13 studies, comprising 2020 T2DM cases and 2910 controls were included. Overall, for the Thr carriers (Ala/Thr and Thr/Thr) versus the wild‐type homozygotes (Ala/Ala), the pooled OR was 1.18 (95% CI = 1.04–1.34, P = 0.062 for heterogeneity), for Thr/Thr versus Ala/Ala the pooled OR was 1.17 (95% CI = 1.05–1.41 P = 0.087 for heterogeneity). In the stratified analysis by ethnicity, the significantly risks were found among Asians but not Caucasians. This meta‐analysis suggests that the FABP2 (rs1799883) Ala54Thr polymorphisms are associated with increased susceptibility to T2DM risk among Asians but not Caucasians.  相似文献   
3.
Sucrose non-fermenting-1-related protein kinase-1 (SnRK1) plays an important role in metabolic regulation in plant. To understand the molecular mechanism of amino acids and carbohydrate metabolism in Malus hupehensis Rehd. var. pinyiensis Jiang (Pingyi Tiancha, PYTC), a full-length cDNA clone encoding homologue of SnRK1 was isolated from PYTC by Rapid Amplification of cDNA Ends (RACE). The clone, designated as MhSnRK1, contains 2063 nucleotides with an open reading frame of 1548 nucleotides. The deduced 515 amino acids showed high identities with other plant SnRK1 genes. Quantitative real-time PCR analysis revealed this gene was expressed in roots, stems and leaves. Exposing seedlings to nitrate caused and initial decrease in expression of the MhSnRK1 gene in roots, leaves and stems in short term. Ectopic expression of MhSnRK1 in tomato mainly resulted in higher starch content in leaf and red-ripening fruit than wild-type plants. This result supports the hypothesis that overexpression of SnRK1 causes the accumulation of starch in plant cells. All the results suggest that MhSnRK1 may play important roles in carbohydrate and amino acid metabolisms.  相似文献   
4.
5.
Mutations in immunoglobulin µ-binding protein 2 (Ighmbp2) cause distal spinal muscular atrophy type 1 (DSMA1), an autosomal recessive disease that is clinically characterized by distal limb weakness and respiratory distress. However, despite extensive studies, the mechanism of disease-causing mutations remains elusive. Here we report the crystal structures of the Ighmbp2 helicase core with and without bound RNA. The structures show that the overall fold of Ighmbp2 is very similar to that of Upf1, a key helicase involved in nonsense-mediated mRNA decay. Similar to Upf1, domains 1B and 1C of Ighmbp2 undergo large conformational changes in response to RNA binding, rotating 30° and 10°, respectively. The RNA binding and ATPase activities of Ighmbp2 are further enhanced by the R3H domain, located just downstream of the helicase core. Mapping of the pathogenic mutations of DSMA1 onto the helicase core structure provides a molecular basis for understanding the disease-causing consequences of Ighmbp2 mutations.  相似文献   
6.
7.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
8.
  1. As a highly endangered species, the giant panda (panda) has attracted significant attention in the past decades. Considerable efforts have been put on panda conservation and reproduction, offering the promising outcome of maintaining the population size of pandas. To evaluate the effectiveness of conservation and management strategies, recognizing individual pandas is critical. However, it remains a challenging task because the existing methods, such as traditional tracking method, discrimination method based on footprint identification, and molecular biology method, are invasive, inaccurate, expensive, or challenging to perform. The advances of imaging technologies have led to the wide applications of digital images and videos in panda conservation and management, which makes it possible for individual panda recognition in a noninvasive manner by using image‐based panda face recognition method.
  2. In recent years, deep learning has achieved great success in the field of computer vision and pattern recognition. For panda face recognition, a fully automatic deep learning algorithm which consists of a sequence of deep neural networks (DNNs) used for panda face detection, segmentation, alignment, and identity prediction is developed in this study. To develop and evaluate the algorithm, the largest panda image dataset containing 6,441 images from 218 different pandas, which is 39.78% of captive pandas in the world, is established.
  3. The algorithm achieved 96.27% accuracy in panda recognition and 100% accuracy in detection.
  4. This study shows that panda faces can be used for panda recognition. It enables the use of the cameras installed in their habitat for monitoring their population and behavior. This noninvasive approach is much more cost‐effective than the approaches used in the previous panda surveys.
  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号