首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1995年   1篇
  1988年   3篇
  1986年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
A new approach to biochemical evaluation of brain dopamine metabolism   总被引:2,自引:0,他引:2  
1. Dopaminergic neurotransmission in brain is receiving increased attention because of its known involvement in Parkinson's disease and new methods for the treatment of this disorder and because of hypotheses relating several psychiatric disorders to abnormalities in brain dopaminergic systems. 2. Chemical assessment of brain dopamine metabolism has been attempted by measuring levels of its major metabolite, homovanillic acid (HVA), in cerebrospinal fluid, plasma, or urine. Because HVA is derived in part from dopamine formed in noradrenergic neurons, plasma levels and urinary excretion rates of HVA do not adequately reflect solely metabolism of brain dopamine. 3. Using debrisoquin, the peripheral contributions of HVA to plasma or urinary HVA can be diminished, but the extent of residual HVA formation in noradrenergic neurons is unknown. By measuring the levels of methoxy-hydroxyphenylglycol (MHPG) in plasma or of urinary norepinephrine metabolites (total MHPG in monkeys; the sum of total MHPG and vanillyl mandelic acid (VMA) in humans) along with HVA, it is possible to estimate the degree of impairment by debrisoquin of HVA formation from noradrenergic neuronal dopamine and thereby better assess brain dopamine metabolism. 4. This method was applied to a monkey before and after destruction of the nigrostriatal pathway by the administration of MPTP.  相似文献   
2.
Purine inhibitors of cyclin-dependent kinases attract attention as potential anticancer drugs because their first representative roscovitine recently entered clinical trials. Although well described in terms of structure-activity relationships, we still present here a novel modification of the purine scaffold influencing their inhibitory properties. The introduced C-8 substituents, however, lowered the CDK inhibitory activity of roscovitine, whereas the antiproliferative potential of several derivatives remained high.  相似文献   
3.
Cytokinins are a class of plant hormones that regulate the cell cycle and diverse developmental and physiological processes. Several compounds have been identified that antagonize the effects of cytokinins. Based on structural similarities and competitive inhibition, it has been assumed that these anticytokinins act through a common cellular target, namely the cytokinin receptor. Here, we examined directly the possibility that various representative classical anticytokinins inhibit the Arabidopsis cytokinin receptors CRE1/AHK4 (cytokinin response 1/Arabidopsis histidine kinase 4) and AHK3 (Arabidopsis histidine kinase 3). We show that pyrrolo[2,3-d]pyrimidine and pyrazolo[4,3-d]pyrimidine anticytokinins do not act as competitors of cytokinins at the receptor level. Flow cytometry and microscopic analyses revealed that anticytokinins inhibit the cell cycle and cause disorganization of the microtubular cytoskeleton and apoptosis. This is consistent with the hypothesis that they inhibit regulatory cyclin-dependent kinase (CDK) enzymes. Biochemical studies demonstrated inhibition by selected anti-cytokinins of both Arabidopsis and human CDKs. X-ray determination of the crystal structure of a human CDK2-anticytokinin complex demonstrated that the antagonist occupies the ATP-binding site of CDK2. Finally, treatment of human cancer cell lines with anticytokinins demonstrated their ability to kill human cells with similar effectiveness as known CDK inhibitors.  相似文献   
4.
Based on our previous experiences with synthesis of purines, novel 2,6,9-trisubstituted purine derivatives were prepared and assayed for the ability to inhibit CDK1/cyclin B kinase. One of newly synthesized compounds designated as olomoucine II, 6-[(2-hydroxybenzyl)amino]-2-[[1-(hydroxymethyl)propyl]amino]-9-isopropylpurine, displays 10 times higher inhibitory activity than roscovitine, potent and specific CDK1 inhibitor. Olomoucine II in vitro cytotoxic activity exceeds purvalanol A, the most potent CDK inhibitor, as it kills the CEM cells with IC(50) value of 3.0 microM.  相似文献   
5.
Exposure of human HeLaS(3) cervix carcinoma cells to high doses of conventional cytostatic drugs, e.g. cisplatin (CP) strongly inhibits their proliferation. However, most cytostatic agents are genotoxic and may generate a secondary malignancy. Therefore, therapeutic strategy using alternative, not cytotoxic drugs would be beneficial. Inhibition of cyclin-dependent kinases (CDKs) by pharmacological inhibitors became recently a promising therapeutic option. Roscovitine (ROSC), a selective CDK inhibitor, efficiently targets human malignant cells. ROSC induces cell cycle arrest and apoptosis in human MCF-7 breast cancer cells. ROSC also activates p53 protein. Activation of p53 tumor suppressor protein is essential for induction of apoptosis in MCF-7 cells. Considering the fact that in HeLaS(3) cells wt p53 is inactivated by the action of HPV-encoded E6 oncoprotein, we addressed the question whether ROSC would be able to reactivate p53 protein in them. Their exposure to ROSC for 24 h induced cell cycle arrest at G(2)/M and reduced the number of viable cells. Unlike CP, ROSC in the used doses did not induce DNA damage and was not directly cytotoxic. Despite lack of detectable DNA lesions, ROSC activated wt p53 protein. The increase of p53 levels was attributable to the ROSC-mediated protein stabilization. Further analyses revealed that ROSC induced site-specific phosphorylation of p53 protein at Ser46. After longer exposure, ROSC induced apoptosis in HeLaS(3) cells. These results indicate that therapy of HeLaS(3) cells by ROSC could offer an advantage over that by CP due to its increased selectivity and markedly reduced risk of generation of a secondary cancer.  相似文献   
6.
7.
Prion disease is caused by a single pathogenic protein (PrPSc), an abnormal conformer of the normal cellular prion protein PrPC. Depletion of PrPC in prion knockout mice makes them resistant to prion disease. Thus, gene silencing of the Prnp gene is a promising effective therapeutic approach. Here, we examined adeno-associated virus vector type 2 encoding a short hairpin RNA targeting Prnp mRNA (AAV2-PrP-shRNA) to suppress PrPC expression both in vitro and in vivo. AAV2-PrP-shRNA treatment suppressed PrP levels and prevented dendritic degeneration in RML-infected brain aggregate cultures. Infusion of AAV2-PrP-shRNA-eGFP into the thalamus of CD-1 mice showed that eGFP was transported to the cerebral cortex via anterograde transport and the overall PrPC levels were reduced by ∼70% within 4 weeks. For therapeutic purposes, we treated RML-infected CD-1 mice with AAV2-PrP-shRNA beginning at 50 days post inoculation. Although AAV2-PrP-shRNA focally suppressed PrPSc formation in the thalamic infusion site by ∼75%, it did not suppress PrPSc formation efficiently in other regions of the brain. Survival of mice was not extended compared to the untreated controls. Global suppression of PrPC in the brain is required for successful therapy of prion diseases.  相似文献   
8.
Exposure of asynchronously growing human HeLa cervical carcinoma cells to roscovitine (ROSC), a selective cyclin‐dependent kinases (CDKs) inhibitor, arrests their progression at the transition between G2/M and/or induces apoptosis. The outcome depends on the ROSC concentration. At higher dose ROSC represses HPV‐encoded E7 oncoprotein and initiates caspase‐dependent apoptosis. Inhibition of the site‐specific phosphorylation of survivin and Bad, occurring at high‐dose ROSC treatment, precedes the onset of apoptosis and seems to be a prerequisite for cell death. Considering the fact that in HeLa cells the G1/S restriction checkpoint is abolished by E7, we addressed the question whether the inhibition of CDKs by pharmacological inhibitors in synchronized cells would be able to block the cell‐cycle in G1 phase. For this purpose, we attempted to synchronize cells by serum withdrawal or by blocking of the mitotic apparatus using nocodazole. Unlike human MCF‐7 cells, HeLa cells do not undergo G1 block after serum starvation, but respond with a slight increase of the ratio of G1 population. Exposure of G1‐enriched HeLa cells to ROSC after re‐feeding does not block their cell‐cycle progression at G1‐phase, but increases the ratio of S‐ and G2‐phase, thereby mimicking the effect on asynchronously growing cells. A quite different impact is observed after treatment of HeLa cells released from mitotic block. ROSC prevents their cell cycle progression and cells transiently accumulate in G1‐phase. These results show that inhibition of CDKs by ROSC in cells lacking the G1/S restriction checkpoint has different outcomes depending on the cell‐cycle status prior to the onset of treatment. J. Cell. Biochem. 106: 937–955, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
9.
To study the structure-activity relationships of aromatic cytokinins, the cytokinin activity at both the receptor and cellular levels, as well as CDK inhibitory and anticancer properties of 38 6-benzylaminopurine (BAP) derivatives were compared in various in vitro assays. The compounds were prepared by the condensation of 6-chloropurine with corresponding substituted benzylamines. The majority of synthesised derivatives exhibited high activity in all three of the cytokinin bioassays employed (tobacco callus, wheat senescence and Amaranthus bioassay). The highest activities were obtained in the senescence bioassay. For some compounds tested, significant differences of activity were found in the bioassays used, indicating that diverse recognition systems may operate and suggesting that it may be possible to modulate particular cytokinin-dependent processes with specific compounds. Position-specific steric and hydrophobic effects of different phenyl ring substituents on the variation of biological activity were confirmed. In contrast to their high activity in bioassays, the BAP derivatives were recognised with much lower sensitivity than trans-zeatin in both Arabidopsis thaliana AHK3 and AHK4 receptor assays. The compounds were also investigated for their effects on cyclin-dependent kinase 2 (CDK2) and for antiproliferative properties on cancer and normal cell lines. Several of the tested compounds showed stronger inhibitory activity and cytotoxicity than BAP. There was also a significant positive correlation of the inhibitory effects on human and plant CDKs with cell proliferation of cancer and cytokinin-dependent tobacco cells, respectively. This suggests that at least a part of the antiproliferative effect of the new cytokinins was due to the inhibition of CDK activity.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号