首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2009年   2篇
  2007年   2篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
排序方式: 共有8条查询结果,搜索用时 46 毫秒
1
1.
2.
Neurogenesis in the Adult Mammalian Brain   总被引:1,自引:0,他引:1  
The concept of the CNS cell composition stability has recently undergone significant changes. It was earlier believed that neurogenesis in the mammalian CNS took place only during embryonic and early postnatal development. New approaches make it possible to prove that neurogenesis takes part even in the adult brain. The present review summarizes the data about the neural stem cell. It has been demonstrated that new neurons are constantly formed in adult mammals, including man. In two brain zones, subventricular zone and dentate gyrus, neurogenesis appears to proceed throughout the entire life of mammals, including man. The newly arising neurons are essential for some important processes, such as memory and learning. Stem cells were found in the subependymal and/or ependymal layer. They express nestin and have a low mitotic activity. During embryogenesis, the stem cell divides asymmetrically: one daughter cell resides as the stem cell in the ependymal layer and another migrates to the subventricular zone. There it gives rise to a pool of dividing precursors, from which neural and glial cells differentiate and migrate to the sites of final localization. The epidermal and fibroblast growth factors act as mitogens for the neural stem cell. The neural stem cell gives rise to the cells of all germ layers in vitro and has a wide potential for differentiation in the adult organism. Hence, it can be used as a source of various cell types of the nervous tissue necessary for cellular transplantation therapy.  相似文献   
3.
4.
The study of the dynamic of morphological changes in the brain after ischemic stroke is very important for the preclinical trial of mesenchymal stem cell (MSC) therapy for this widespread disease. Experiments were carried out in inbred Wistar-Kyoto rats. MSCs were isolated, expanded in culture, and labeled with the vital fluorescent dye PKH-26. Animals were subjected to middle cerebral artery occlusion (MCAO), followed by an injection of 5 × 106 rat MSCs into the tail vein on the day of MCAO. Control group animals received PBS injection (negative control). Animals were sacrificed at 1, 2, 3, and 5 days and 1, 2, 4, and 6 weeks after the operation. MSCs were revealed in the brain on the third day after transplantation as being distributed around brain vessels both in the ipsilateral and contralateral hemispheres. This pattern of distribution remained unchanged throughout six weeks of observation. It was demonstrated that the inflammation process and scar formation in the cell therapy group were progressing at a rate 25–30% faster than in the control group. MSC transplantation stimulated endogenous stem cell proliferation in the subependimal zone of lateral ventricles (subventricular zone). In addition, MSC injection caused a neuroprotecting effect; most penumbra neurons retained their structure in cell therapy group, whereas in control group, animal penumbra neurons died or showed signs of serious damage.  相似文献   
5.
Mesenchymal stem cell (MSCs)-based therapy is a promising attempt to improve the recovery after stroke. Our experiments were carried out on inbred Wistar-Kyoto rats. MSCs were isolated, expanded in culture, and labeled with vital fluorescent dye PKH-26. Animals were subjected to middle cerebral artery occlusion (MCAO). After three days, MCAO 5 × 106 isolated MSCs were injected into the tail vein of the experimental rats. The control animal group received PBS injections (negative control). Therapy results were evaluated by the following parameters: behavioral and neurological testing, the inured brain areas, damaged brain structures, neuron state, and vessel quantity in the region close to with necrosis zone. It was shown that control animals (PBS injection) did not return to their initial behavioral and neurological state within 6 weeks, while the experimental animals (MSCs injection), within 2–3 weeks after MCAO, had parameters like intact rats. The size of the damaged region in the control group was larger than in the experimental group by a factor of approximately 1.3. The damage in MSC-treated rats was limited to the neocortex; caudate nucleus, capsula externa and piriform cortex remained uninjured. The small vessel quantity in the “border” regions was twice as high as compared to the control group and approximately equal to the number of vessels in an intact brain. For the first time, we demonstrated that the vessel quantity in the neocortex and caudate nucleus of the contralateral hemisphere after MSC transplantation was twice as high as in control rats. It is concluded that the MSC transplantation exerts a beneficial influence upon the brain tissue reparation after stroke.  相似文献   
6.
7.
Over the last several decades, murine embryonic stem cells (mESCs) have been used as a model for human embryonic stem cell (hESC) research. The relevance of this approach has not yet been proven. There is a great deal of evidence that is indicative of substantial differences between these two cell types. An analysis of the literature shows that the differences concern ESC proliferation, self-renewal, and differentiation. Consequently, mESC may be considered as a model object for hESC studies only for some aspects of their biology. The alternative model objects, such as primate ESC, are also discussed briefly in this review.  相似文献   
8.
An incoherent Thomson scattering system for observing local unsteady cavities that form in a turbulent plasma in the course of Langmuir collapse is described. Using this diagnostics, the density cavities in a laboratory plasma with developed strong Langmuir turbulence were directly observed for the first time and their spatial and temporal characteristics were determined.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号