首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  11篇
  2014年   5篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
排序方式: 共有11条查询结果,搜索用时 0 毫秒
1.
Amylomaltase and transglucosidase were combined to produce long-chain isomaltooligosaccharides (IMOs). IMOs are effective prebiotics that stimulate the growth of healthy bacteria in human intestines and thus promote better overall health. In this study, the p17bAMY amylomaltase was expressed from its gene, which had been directly isolated from soil samples, while transglucosidase was purchased and purified by a gel-filtration column. Crude amylomaltase was purified by heat treatment, Q-, and phenyl-sepharose column. The purified amylomaltase had a molecular weight of 57 kDa. Specificity on the substrates of the amylomaltase was also studied and it was found that this enzyme was able to catalyze transglucosylation activity using substrates G2 to G7. However, G3 was the most preferred substrate for the enzyme. Here, K m-G3 and k cat/K m were 23 mM and 1.72 × 108 mM/min, respectively. Amylomaltase and transglucosidase were tested both alone and in combination on a G3 substrate to study the efficient process for the IMOs production. The obtained products from the enzymatic reactions were monitored using the TLC analytical method and a densitometer. The amylomaltase led to products containing linear maltooligosaccharides, while the transglucosidase produced short-chain IMOs. Interestingly, when amylomaltase and transglucosidase were used in combination, long-chain IMOs with sizes larger than IMO4 were observed under the determined condition.  相似文献   
2.
3.
Impaired trafficking of human kidney anion exchanger 1 (kAE1) to the basolateral membrane of α-intercalated cells of the kidney collecting duct leads to the defect of the Cl/ exchange and the failure of proton (H+) secretion at the apical membrane of these cells, causing distal renal tubular acidosis (dRTA). In the sorting process, kAE1 interacts with AP-1 mu1A, a subunit of AP-1A adaptor complex. However, it is not known whether kAE1 interacts with motor proteins in its trafficking process to the plasma membrane or not. We report here that kAE1 interacts with kinesin family member 3B (KIF3B) in kidney cells and a dileucine motif at the carboxyl terminus of kAE1 contributes to this interaction. We have also demonstrated that kAE1 co-localizes with KIF3B in human kidney tissues and the suppression of endogenous KIF3B in HEK293T cells by small interfering RNA (siRNA) decreases membrane localization of kAE1 but increases its intracellular accumulation. All results suggest that KIF3B is involved in the trafficking of kAE1 to the plasma membrane of human kidney α-intercalated cells.  相似文献   
4.
Severe forms of dengue virus (DENV) infection frequently cause high case fatality rate. Currently, there is no effective vaccine against the infection. Clinical cases are given only palliative treatment as specific anti-DENV immunotherapy is not available and it is urgently required. In this study, human single-chain variable fragment (HuScFv) antibodies that bound specifically to the conserved non-structural protein-1 (NS1) of DENV and interfered with the virus replication cycle were produced by using phage display technology. Recombinant NS1 (rNS1) of DENV serotype 2 (DENV2) was used as antigen in phage bio-panning to select phage clones that displayed HuScFv from antibody phage display library. HuScFv from two phagemid transformed E. coli clones, i.e., clones 11 and 13, bound to the rNS1 as well as native NS1 in both secreted and intracellular forms. Culture fluids of the HuScFv11/HuScFv13 exposed DENV2 infected cells had significant reduction of the infectious viral particles, implying that the antibody fragments affected the virus morphogenesis or release. HuScFv epitope mapping by phage mimotope searching revealed that HuScFv11 bound to amino acids 1–14 of NS1, while the HuScFv13 bound to conformational epitope at the C-terminal portion of the NS1. Although the functions of the epitopes and the molecular mechanism of the HuScFv11 and HuScFv13 require further investigations, these small antibodies have high potential for development as anti-DENV biomolecules.  相似文献   
5.
Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), caused by dengue virus (DENV) infection, are important public health problems in the tropical and subtropical regions. Abnormal hemostasis and plasma leakage are the main patho-physiological changes in DHF/DSS. A remarkably increased production of cytokines, the so called 'cytokine storm', is observed in the patients with DHF/DSS. A complex interaction between DENV proteins and the host immune response contributes to cytokine production. However, the molecular mechanism(s) by which DENV nonstructural protein 5 (NS5) mediates these responses has not been fully elucidated. In the present study, yeast two-hybrid assay was performed to identify host proteins interacting with DENV NS5 and a death-domain-associate protein (Daxx) was identified. The in vivo relevance of this interaction was suggested by co-immunoprecipitation and nuclear co-localization of these two proteins in HEK293 cells expressing DENV NS5. HEK293 cells expressing DENV NS5-K/A, which were mutated at the nuclear localization sequences (NLS), were created to assess its functional roles in nuclear translocation, Daxx interaction, and cytokine production. In the absence of NLS, DENV NS5 could neither translocate into the nucleus nor interact with Daxx to increase the DHF-associated cytokine, RANTES (CCL5) production. This work demonstrates the interaction between DENV NS5 and Daxx and the role of the interaction on the modulation of RANTES production.  相似文献   
6.
Kidney anion exchanger 1 (kAE1) plays an important role in acid–base homeostasis by mediating chloride/bicarbornate (Cl?/HCO3?) exchange at the basolateral membrane of α‐intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease – distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans‐Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral‐related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non‐polarized kidney cells. By using RNA interference, co‐immunoprecipitation, yellow fluorescent protein‐based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP‐1 mu1A, AP‐3 mu1, AP‐4 mu1 and clathrin (but not AP‐1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral‐related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP‐1 mu1A, AP‐3 mu1, AP‐4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid‐secreting α‐intercalated cells.   相似文献   
7.
Kidney anion exchanger 1 (kAE1) mediates chloride (Cl) and bicarbonate (HCO3) exchange at the basolateral membrane of kidney α-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl/HCO3 exchange at the basolateral membrane and failure of proton (H+) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 μ1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXØ motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1 trafficking of kidney α-intercalated cells.  相似文献   
8.
This study aimed to improve the water solubility of 5,7-dimethoxyflavone (5,7-DMF) isolated from Kaempferia parviflora by complexation with 2-hydroxypropyl-β-cyclodextrin (HPβ-CD). The phase solubility profile of 5,7-DMF in the presence of HPβ-CD was classified as AL-type and indicated a 1:1 mole ratio. Differential scanning colorimetry, X-ray diffraction, NMR and SEM analyses supported the formation of a 5,7-DMF/HPβ-CD inclusion complex involving the A ring of 5,7-DMF inside the HPβ-CD cavity. This is the first example of CD inclusion with the A ring of non-hydroxyl flavones. The stability and binding constants of the complexes were determined using the phase solubility and UV-vis absorption spectroscopy, respectively. The water solubility of 5,7-DMF was increased 361.8-fold by complexation with HPβ-CD and overcame the precipitation problem observed in aqueous buffers, such as during in vitro anti-butyrylcholinesterase activity assays. The 1:1 mole ratio of the 5,7-DMF/HPβ-CD complex showed a 2.7-fold higher butyrylcholinesterase inhibitory activity (in terms of the IC50 value) compared to the non-complexed compound.  相似文献   
9.
We previously reported the association between prothrombin (F2), encoding a stone inhibitor protein - urinary prothrombin fragment 1 (UPTF1), and the risk of kidney stone disease in Northeastern Thai patients. To identify specific F2 variation responsible for the kidney stone risk, we conducted sequencing analysis of this gene in a group of the patients with kidney stone disease. Five intronic SNPs (rs2070850, rs2070852, rs1799867, rs2282687, and rs3136516) and one exonic non-synonymous single nucleotide polymorphism (nsSNP; rs5896) were found. The five intronic SNPs have no functional change as predicted by computer programs while the nsSNP rs5896 (c.494 C>T) located in exon 6 results in a substitution of threonine (T) by methionine (M) at the position 165 (T165M). The nsSNP rs5896 was subsequently genotyped in 209 patients and 216 control subjects. Genotypic and allelic frequencies of this nsSNP were analyzed for their association with kidney stone disease. The frequency of CC genotype of rs5896 was significantly lower in the patient group (13.4%) than that in the control group (22.2%) (P = 0.017, OR 0.54, 95% CI 0.32–0.90), and the frequency of C allele was significantly lower in the patient group (36.1%) than that in the control group (45.6%) (P = 0.005, OR 0.68, 95% CI 0.51–0.89). The significant differences of genotype and allele frequencies were maintained only in the female group (P = 0.033 and 0.003, respectively). The effect of amino-acid change on UPTF1 structure was also examined by homologous modeling and in silico mutagenesis. T165 is conserved and T165M substitution will affect hydrogen bond formation with E180. In conclusion, our results indicate that prothrombin variant (T165M) is associated with kidney stone risk in the Northeastern Thai female patients.  相似文献   
10.
The aim of this study was to isolate a novel amylomaltase gene from community DNA of soil samples collected from Ban Nong Khrok hot spring in Thailand without bacterial cultivation. Using PCR, a 1.5 kb full-length gene was amplified and ligated with pGEM®-T easy vector to transform into Escherichia coli DH5 α for sequencing. The obtained gene encoding an amylomaltase consisted of 1,503 bp that translated into 500 amino acids. Amino acid sequence deduced from this gene was highly homologous with that of amylomaltase from Thermus thermophillus ATCC 33923. In order to express the enzyme, the cloned gene was subcloned into plasmid pET-17b and introduced into E. coli BL21(DE3). The maximum expression was observed when the cloned cells were cultured at 37°C for 6 h with 0.5 mM IPTG induction. By 10% SDS-PAGE, the relative molecular mass of the purified amylomaltase was approximately 58 kDa. This enzyme was optimally active at 70°C and pH 9.0. In addition, the enzyme could hydrolyze pea starch to yield the largering cyclodextrins with degrees of polymerization of 23 and higher. It is noted that CD29 was the product in the largest quantity under all tested conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号