首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   3篇
  52篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2008年   3篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有52条查询结果,搜索用时 0 毫秒
1.
2.
Cancer develops and progresses as genetic alterations occur subsequently. Onset process of cancer has become well understood in some types of cancer, such as colorectal cancers. In this process, responsible alterations were identified in numbers of oncogenes such as k-ras, and tumor suppressor genes such as p53, as Vogelstein proposed earlier in the multistage carcinogenesis theory. In contrast, our understanding remains short to draw such an adequate diagram for the process during which cancer becomes more malignant, i.e., metastatic. To examine the molecular basis for this progression step, mouse metastasis models have been established where tumor cell lines are inoculated into mice and metastasize to specific organs. The model using B16 melanoma cells is one of the most developed. BL6 subline, one of the most metastatic, was obtained from F10 subline simply through six rounds of in vitro selection. Nonetheless, BL6 cells metastasize lungs much more heavily than F10 cells when injected subcutaneously. The difference in gene expression between the two sublines is considered rather small but relevant for spontaneous metastasis. We began our research by elaborating a method for the construction of subtracted cDNA libraries, and made it applicable to BL6 and F10 cells. As a result, we were able to isolate a couple of genes that were expressed differently between the two sublines. As might be expected, each of the genes appeared to play a role more or less in distinct aspects of spontaneous metastasis of B16 melanoma cells. Moreover, similar roles were expected for the genes in the process by which human melanoma cells metastasize.  相似文献   
3.
The effect of the various glycosyltransferases on glycosphingolipids was examined, using transfected swine endothelial cell (SEC) lines. The reactivity of parental SEC to normal human serum (NHS) and Griffonia simplicifolia IB(4) (GSIB4) lectin, which binds to the Gal alpha1-3 Gal beta 1-4 GlcNAc-R (alpha-galactosyl epitope), was reduced by approximately 20% by the treatment with D-PDMP (D-threo-1-phenyl-2-decan- oylamino-3-morpholino-1-propanol), suggesting that glycosphingolipids contained by SEC have a considerable amount of the alpha-galactosyl epitope. The overexpression of two different types of glycosyltransferase, N-acetylglucosaminyl transferase III (GnT-III), as well as alpha2, 6-sialyltransferase (ST6Gal I), alpha2,3-sialyltransferase (ST3Gal III), and alpha1,2-fucosyltransferase (alpha1,2FT), suppresses the total antigenicity of SEC significantly. However, the reduction in reactivities toward NHS and GSIB4 lectin in the case of GnT-III transfectants was milder than those in other transfectants. Western blot analysis indicated that the glycoproteins in all transfectants had diminished reactivity to NHS and GSIB4 lectin to approximately the same extent. Therefore, the neutral glycosphingolipids of these transfectants were separated by thin layer chromatography, followed by immunostaining with NHS and GSIB4 lectin. The levels of the alpha-galactosyl epitope in glycosphingolipids were not decreased in the GnT-III transfectants but were in the ST6Gal I, ST3Gal III, and alpha1,2FT transfectants. These data indicate that ST6Gal I, ST3Gal III, and alpha1,2FT reduced the alpha-galactosyl epitope in both glycoproteins and glycosphingolipids, while GnT-III reduced them only in glycoproteins.  相似文献   
4.
For the determination of substrate specificities of thermophilic alpha-aminotransferases (AATs), a novel high-throughput assay method was developed. In this method, a thermophilic omega-aminotransferase (OAT) and a thermophilic aldehyde dehydrogenase (ALDH) are coupled to the AAT reaction. Glutamic acid is used as an amino group donor for the AAT reaction yielding 2-oxoglutalic acid. 2-Oxoglutalic acid produced by the AAT reaction is used as an amino group acceptor in the OAT reaction regenerating glutamic acid. The amino group donor of the OAT reaction is 5-aminopentanoic acid yielding pentanedioic acid semialdehyde which is oxidized by ALDH to pentanedioic acid with concomitant reduction of NADP(+) to NADPH. NADPH thus produced then reduces colorless tetrazolium salt into colored formazan. To construct such a reaction system, the genes for a thermophilic AAT, a thermophilic OAT and a thermophilic ALDH were cloned and expressed in Escherichia coli. These enzymes were subsequently purified and used to determine the activities of AAT for the synthesis of unnatural amino acids. This method allowed the clear detection of the AAT activities as it measures the increase in the absorbance on a low background absorbance reading.  相似文献   
5.
Five carboxin-resistant mutants from Aspergillus oryzae were characterized by the sensitivities of their mycelial growth and succinate dehydrogenase (SDH) activity to carboxin and three related fungicides. Despite a significant resistance to carboxin, exhibited by all the mutants, their patterns of sensitivity to the other fungicides was distinct. This provides clues to the molecular interaction between SDH and these fungicides.  相似文献   
6.
Advanced glycation end products (AGE)-modified proteins as well as oxidized-LDL (Ox-LDL) undergo receptor-mediated endocytosis by CHO cells overexpressing CD36, a member of class B scavenger receptor family. The purpose of the present study was to examine the effects of glycolaldehyde-modified BSA (GA-BSA) as an AGE-ligand and Ox-LDL on leptin expression in adipocytes. GA-BSA decreased leptin expression at both protein and mRNA levels in 3T3-L1 adipocytes and mouse epididymal adipocytes. Ox-LDL showed a similar inhibitory effect on leptin expression in 3T3-L1 adipocytes, which effect was protected by N-acetylcysteine, a reactive oxygen species (ROS) inhibitor. Binding of (125)I-GA-BSA or (125)I-Ox-LDL to 3T3-L1 adipocytes and subsequent endocytic degradation were inhibited by a neutralizing anti-CD36 antibody. Furthermore, this antibody also suppressed Ox-LDL-induced leptin down-regulation. These results clarify that the interaction of GA-BSA and Ox-LDL with CD36 leads to down-regulation of leptin expression via ROS system(s) in 3T3-L1 adipocytes, suggesting that a potential link of AGE- and/or Ox-LDL-induced leptin down-regulation might be linked to insulin-sensitivity in metabolic syndrome.  相似文献   
7.
8.
Nucleoside transporter (NT) plays key roles in the physiology of nucleosides and the pharmacology of its analogues in mammals. We previously cloned Na+/nucleoside cotransporter CNT2 from mouse M5076 ovarian sarcoma cells, the peptide encoded by it differing from that by the previously reported mouse CNT2 in five substitutions, and observed that the transporter can take up cytidine, like CNT1 and CNT3. In the present study, we examined which of the two aforementioned CNT2 is the normal one, and whether or not cytidine is transported via the previously reported CNT2. The peptide encoded by CNT2 derived from mouse intestine, liver, spleen, and ovary was identical to that previously reported. The uptake of [3H]cytidine, but not [3H]thymidine, by Cos-7 cells transfected with CNT2 cDNA obtained from mouse intestine was much greater than that by mock cells, as in the case of [3H]uridine, a typical substrate of NT. [3H]Cytidine and [3H]uridine were taken up via CNT2, in temperature-, extracellular Na+-, and substrate concentration-dependent manners. The uptake of [3H]cytidine and [3H]uridine mediated by CNT2 was significantly inhibited by the variety of nucleosides used in this study, except for thymidine, and inhibition of the [3H]uridine uptake by cytidine was competitive. The [3H]uridine uptake via CNT2 was significantly decreased by the addition of cytarabin or gemcitabine, antimetabolites of cytidine analogue. These results indicated that the previously reported mouse CNT2 is the wild-type one, and cytidine is transported mediated by the same recognition site on the CNT2 with uridine, and furthermore, cytidine analogues may be substrates for the transporter.  相似文献   
9.
Escherichia coli was metabolically engineered by expanding the shikimate pathway to generate strains capable of producing six kinds of aromatic compounds, phenyllactic acid, 4-hydroxyphenyllactic acid, phenylacetic acid, 4-hydroxyphenylacetic acid, 2-phenylethanol, and 2-(4-hydroxyphenyl)ethanol, which are used in several fields of industries including pharmaceutical, agrochemical, antibiotic, flavor industries, etc. To generate strains that produce phenyllactic acid and 4-hydroxyphenyllactic acid, the lactate dehydrogenase gene (ldhA) from Cupriavidus necator was introduced into the chromosomes of phenylalanine and tyrosine overproducers, respectively. Both the phenylpyruvate decarboxylase gene (ipdC) from Azospirillum brasilense and the phenylacetaldehyde dehydrogenase gene (feaB) from E. coli were introduced into the chromosomes of phenylalanine and tyrosine overproducers to generate phenylacetic acid and 4-hydroxyphenylacetic acid producers, respectively, whereas ipdC and the alcohol dehydrogenase gene (adhC) from Lactobacillus brevis were introduced to generate 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol producers, respectively. Expression of the respective introduced genes was controlled by the T7 promoter. While generating the 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol producers, we found that produced phenylacetaldehyde and 4-hydroxyphenylacetaldehyde were automatically reduced to 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol by endogenous aldehyde reductases in E. coli encoded by the yqhD, yjgB, and yahK genes. Cointroduction and cooverexpression of each gene with ipdC in the phenylalanine and tyrosine overproducers enhanced the production of 2-phenylethanol and 2-(4-hydroxyphenyl)ethanol from glucose. Introduction of the yahK gene yielded the most efficient production of both aromatic alcohols. During the production of 2-phenylethanol, 2-(4-hydroxyphenyl)ethanol, phenylacetic acid, and 4-hydroxyphenylacetic acid, accumulation of some by-products were observed. Deletion of feaB, pheA, and/or tyrA genes from the chromosomes of the constructed strains resulted in increased desired aromatic compounds with decreased by-products. Finally, each of the six constructed strains was able to successfully produce a different aromatic compound as a major product. We show here that six aromatic compounds are able to be produced from renewable resources without supplementing with expensive precursors.  相似文献   
10.
Thirty-six bacteria that degraded long-chain hydrocarbons were isolated from natural environments using long-chain hydrocarbons (waste car engine oil, base oil or the c-alkane fraction of base oil) as the sole carbon and energy source. A phylogenetic tree of the isolates constructed using their 16S rDNA sequences revealed that the isolates were divided into six genera plus one family (Acinetobacter, Rhodococcus, Gordonia, Pseudomonas, Ralstonia, Bacillus and Alcaligenaceae, respectively). Furthermore, most of the isolates (27 of 36) were classified into the genera Acinetobacter, Rhodococcus or Gordonia. The hydrocarbon-degradation similarity in each strain was confirmed by the 2,6-dichlorophenol indophenol (2,6-DCPIP) assay. Isolates belonging to the genus Acinetobacter degraded long-chain normal alkanes (n-alkanes) but did not degrade short-chain n-alkanes or cyclic alkanes (c-alkanes), while isolates belonging to the genera Rhodococcus and Gordonia degraded both long-chain n-alkanes and c-alkanes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号