首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
  2022年   1篇
  2021年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2008年   3篇
  2006年   2篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1993年   1篇
  1992年   1篇
  1991年   6篇
  1990年   8篇
  1989年   2篇
  1986年   1篇
  1984年   2篇
排序方式: 共有43条查询结果,搜索用时 375 毫秒
1.
2.
Summary The localization of PKC- was studied in rat sympathetic neurons using a polyclonal antibody specific for the 1- and 2-subspecies. The tissues studied included the superior cervical (SCG) and hypogastric (HGG) ganglia and the target tissues of the SCG and HGG neurons: the submandibular gland, iris, prostate and vas deferens. PKC--LI was found in nerve fibers in both ganglia. A proportion of the fibers in the SCG disappeared after decentralization, suggesting that the fibers were of both pre- and postganglionic origin. The somata of the HGG and SCG neurons expressed varying amounts of PKC--LI, the majority of SCG neurons being labelled only after colchicine treatment. In all target tissues there were PKC--immunoreactive nerve fibers in bundles, but the most peripheral branches of the fibers were negatively labelled. The results show that PKC--LI is widely present in sympathetic postganglionic neurons with mainly quantitative differences. The lack of PKC- in the most peripheral branches of nerve fibers might be a general feature of sympathetic postganglionic neurons, suggesting that the participation of PKC- in neurotransmitter release and in other functions in nerve terminals in sympathetic adrenergic neurons is unlikely.  相似文献   
3.
4.
Ischemic stroke is confounded by conditions such as atherosclerosis, diabetes, and infection, all of which alter peripheral inflammatory processes with concomitant impact on stroke outcome. The majority of the stroke patients are elderly, but the impact of interactions between aging and inflammation on stroke remains unknown. We thus investigated the influence of age on the outcome of stroke in animals predisposed to systemic chronic infection. Th1‐polarized chronic systemic infection was induced in 18–22 month and 4‐month‐old C57BL/6j mice by administration of Trichuris muris (gut parasite). One month after infection, mice underwent permanent middle cerebral artery occlusion and infarct size, brain gliosis, and brain and plasma cytokine profiles were analyzed. Chronic infection increased the infarct size in aged but not in young mice at 24 h. Aged, ischemic mice showed altered plasma and brain cytokine responses, while the lesion size correlated with plasma prestroke levels of RANTES. Moreover, the old, infected mice exhibited significantly increased neutrophil recruitment and upregulation of both plasma interleukin‐17α and tumor necrosis factor‐α levels. Neither age nor infection status alone or in combination altered the ischemia‐induced brain microgliosis. Our results show that chronic peripheral infection in aged animals renders the brain more vulnerable to ischemic insults, possibly by increasing the invasion of neutrophils and altering the inflammation status in the blood and brain. Understanding the interactions between age and infections is crucial for developing a better therapeutic regimen for ischemic stroke and when modeling it as a disease of the elderly.  相似文献   
5.
We have previously shown that apolipoprotein E (Apoe) promotes the formation of amyloid in brain and that astrocyte-specific expression of APOE markedly affects the deposition of amyloid-beta peptides (Abeta) in a mouse model of Alzheimer disease. Given the capacity of astrocytes to degrade Abeta, we investigated the potential role of Apoe in this astrocyte-mediated degradation. In contrast to cultured adult wild-type mouse astrocytes, adult Apoe(-/-) astrocytes do not degrade Abeta present in Abeta plaque-bearing brain sections in vitro. Coincubation with antibodies to either Apoe or Abeta, or with RAP, an antagonist of the low-density lipoprotein receptor family, effectively blocks Abeta degradation by astrocytes. Phase-contrast and confocal microscopy show that Apoe(-/-) astrocytes do not respond to or internalize Abeta deposits to the same extent as do wild-type astrocytes. Thus, Apoe seems to be important in the degradation and clearance of deposited Abeta species by astrocytes, a process that may be impaired in Alzheimer disease.  相似文献   
6.
Aspirin [acetylsalicylic acid (ASA)] is an anti-inflammatory drug that protects against cellular injury by inhibiting cyclooxygenases (COX), inducible nitric oxide synthase (iNOS) and p44/42 mitogen-activated protein kinase (p44/42 MAPK), or by preventing translocation of nuclear factor kappaB (NF-kappaB). We studied the effect of ASA pre-treatment on neuronal survival after hypoxia/reoxygenation damage in rat spinal cord (SC) cultures. In this injury model, COX, iNOS and NF-kappaB played no role in the early neuronal death. A 20-h treatment with 3 mm ASA prior to hypoxia/reoxygenation blocked the hypoxia/reoxygenation-induced lactate dehydrogenase (LDH) release from neurons. This neuroprotection was associated with increased phosphorylation of neurofilaments, which are substrates of p44/42 MAPK and cyclin-dependent kinase 5 (Cdk5). PD90859, a p44/42 MAPK inhibitor, had no effect on ASA-induced tolerance, but olomoucine and roscovitine, Cdk5 inhibitors, reduced ASA neuroprotection. Hypoxia/reoxygenation alone reduced both the protein amount and activity of Cdk5, and this reduction was inhibited by pre-treatment with ASA. Moreover, the protein amount of a neuronal Cdk5 activator, p35, recovered after reoxygenation only in ASA-treated samples. The prevention of the loss in Cdk5 activity during reoxygenation was crucial for ASA-induced protection, because co-administration of Cdk5 inhibitors at the onset ofreoxygenation abolished the protection. In conclusion, pre-treatment with ASA induces tolerance against hypoxia/reoxygenation damage in spinal cord cultures by restoring Cdk5 and p35 protein expression.  相似文献   
7.
8.
The localization of PKC-beta was studied in rat sympathetic neurons using a polyclonal antibody specific for the beta 1- and beta 2-subspecies. The tissues studied included the superior cervical (SCG) and hypogastric (HGG) ganglia and the target tissues of the SCG and HGG neurons: the submandibular gland, iris, prostate and vas deferens. PKC-beta-LI was found in nerve fibers in both ganglia. A proportion of the fibers in the SCG disappeared after decentralization, suggesting that the fibers were of both pre- and postganglionic origin. The somata of the HGG and SCG neurons expressed varying amounts of PKC-beta-LI, the majority of SCG neurons being labelled only after colchicine treatment. In all target tissues there were PKC-beta-immunoreactive nerve fibers in bundles, but the most peripheral branches of the fibers were negatively labelled. The results show that PKC-beta-LI is widely present in sympathetic postganglionic neurons with mainly quantitative differences. The lack of PKC-beta in the most peripheral branches of nerve fibers might be a general feature of sympathetic postganglionic neurons, suggesting that the participation of PKC-beta in neurotransmitter release and in other functions in nerve terminals in sympathetic adrenergic neurons is unlikely.  相似文献   
9.
Recent immunohistochemical studies suggest that the unoccupied glucocorticoid receptor (GR) is cytoplasmic and that the ligand causes its translocation into the target cell nucleus. The subcellular location of GR is especially interesting in that other members of the steroid receptor superfamily appear to be nuclear. The intracellular distribution of GR was studied immunohistochemically using a new freeze-drying and vapor fixation method which eliminates the protein diffusion and redistribution possibly caused by liquid fixation techniques. We used two monoclonal antibodies against rat liver GR. Dried samples of the adrenalectomized rat brain and uterus were fixed in p-benzoquinone vapor for 3 h at 60°C and embedded in paraffin. Sections were stained with a biotinylated mouse monoclonal GR antibody using the avidin-biotin-peroxidase complex. Both unoccupied and occupied GR were found in the nucleus of the target cells, fibroblasts in the uterus and nerve cells in the cortex of the brain. The staining was saturated with the cytosol of cos cellls transfected with GR. No cytoplasmic staining was seen even 2 days after adrenalectomy. In conclusion we propose that GR is also located in the nucleus independently of occupation.  相似文献   
10.
J Koistinaho 《Acta anatomica》1991,140(4):369-372
The adrenergic innervation was studied in the human sciatic nerve at the gestational age of 16, 17, 18 and 21 weeks. Formaldehyde-induced catecholamine fluorescence, tyrosine hydroxylase (TH) and neuropeptide Y (NPY) peroxidase-antiperoxidase immunohistochemistry methods were used. At the gestational age of 16, 17 and 18 weeks no adrenergic or NPY-positive nerve fibers were seen. At 21 weeks both fluorescence microscopy and TH immunohistochemistry showed adrenergic nerve fibers around arterioles in the epiperineurium and single nerve fibers in the endoneurium not related to blood vessels. The number of adrenergic nerve fibers appeared to be higher in the sciatic than in the tibial segment of the nerve. At this age, as at earlier stages of gestation, no NPY-positive nerve fibers were seen either in the epiperineurium or in the endoneurium. The results suggest that adrenergic nerve fibers may be associated with the epiperineurial blood vessels in the human sciatic nerve, and that the innervation starts to develop between 18 and 21 weeks of gestational age.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号