首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2011年   3篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有23条查询结果,搜索用时 171 毫秒
1.
We report here a novel carrier of quantum dots (QDs) for intracellular labeling. Monodisperse hybrid nanoparticles (38 nm in diameter) of QDs were prepared by simple mixing with nanogels of cholesterol-bearing pullulan (CHP) modified with amino groups (CHPNH2). The CHPNH2-QD nanoparticles were effectively internalized into the various human cells examined. The efficiency of cellular uptake was much higher than that of a conventional carrier, cationic liposome. These hybrid nanoparticles could be a promising fluorescent probe for bioimaging.  相似文献   
2.
S100A3 is a unique member of the Ca2+-binding S100 protein family with the highest cysteine content and affinity for Zn2+. This protein is highly expressed in the differentiating cuticular cells within the hair follicle and organized into mature hair cuticles. Previous studies suggest a close association of S100A3 with epithelial differentiation, leading to hair shaft formation, but its molecular function is still unknown. By two-dimensional PAGE-Western blot analyses using a modified citrulline antibody, we discovered that more than half of the arginine residues of native S100A3 are progressively converted to citrullines by Ca2+-dependent peptidylarginine deiminases. Confocal immunofluorescent microscopy showed that the cytoplasmic S100A3 within the cuticular layer is mostly co-localized with the type III isoform of peptidylarginine deiminase (PAD3) but not with PAD1. Recombinant PAD1 and PAD2 are capable of converting all 4 arginines in recombinant S100A3, whereas PAD3 specifically converts only Arg-51 into citrulline. Gel filtration analyses showed that either enzymatic conversion of Arg-51 in S100A3 to citrulline or its mutational substitution with alanine (R51A) promotes a homotetramer assembly. Fluorescent titration of R51A suggested that its potential Ca2+ binding property increased during tetramerization. A prototype structural model of the globular Ca2+-bound S100A3 tetramer with citrulline residues is presented. High concentrations of S100A3 homotetramer might provide the millimolar level of Ca2+ required for hair cuticular barrier formation.  相似文献   
3.
4.
Abstract: We found in cultured glioma (C6BU-1) cells that excitatory amino acids (EAAs) such as glutamate, N-methyl-d -aspartate (NMDA), aspartate, and metabotropic glutamate receptor agonist trans-(±)-1-amino-1,3-cyclopentanedicarboxylate caused an increase in the inositol 1,4,5-trisphosphate formation and the intracellular Ca2+ concentration ([Ca2+]i) in the absence of extracellular Mg2+ and Ca2+. Pertussis toxin treatment abolished this glutamate-induced [Ca2+]i increase. Various antagonists against NMDA receptor-ion channel complex, such as Mg2+, d -2-amino-5-phosphonovalerate (d -APV), HA-966, and MK-801, also inhibited the increase in [Ca2+]i induced by glutamate. These results indicate that these metabotropic EAA receptors coupled to pertussis toxin-susceptible GTP-binding protein and phospholipase C system in C6BU-1 glioma cells have the pharmacological properties of NMDA receptor-ion channel complexes. We also found that in the presence of Mg2+ these metabotropic receptors resemble the NMDA receptor-ion channel complex interacted with 5-hydroxytryptamine2 (5-HT2) receptor signaling. EAAs inhibited 5-HT2 receptor-mediated intracellular Ca2+ mobilization and inositol 1,4,5-trisphosphate formation in a concentration-dependent manner. The inhibitory effect of glutamate was reversed by various NMDA receptor antagonists (d -APV, MK-801, phencyclidine, and HA-966), but l -APV failed to block the inhibitory effect of glutamate. The same result was observed in the absence of extracellular Ca2+. In addition, this inhibitory effect on 5-HT2 receptor-mediated signal transduction was abolished by treatment of C6BU-1 cells with pertussis toxin, whereas 5-HT2 receptor-mediated [Ca2+]i increase was not abolished by pertussis toxin treatment. We can, therefore, conclude that the inhibitory effect of glutamate is not a result of the influx of Ca2+ through the ion channel and that it operates via metabotropic glutamate receptors, having NMDA receptor-ion channel complex-like properties and being coupled with pertussis toxin-sensitive GTP-binding protein and phospholipase C.  相似文献   
5.
Embryonic stem (ES) cells, derived from the inner cell mass of blastocyst can differentiate into multiple cell lineages. In this study, we examined the possible involvement of Ras in ES cell differentiation. We found that Ras was activated upon formation of embryoid bodies (EBs), an initial step in ES cell differentiation. When expressed during EB differentiation, a dominant-negative mutant of Ras suppressed induction of marker genes for extraembryonic endoderm differentiation, including GATA-4, GATA-6, alpha-fetoprotein, and hepatocyte nuclear factor 3beta, while an activated mutant promoted their induction. Expression of a Ras mutant that selectively activates the Raf/MEK/Erk pathway also enhanced induction of extraembryonic endoderm markers, and treatment with a MEK inhibitor resulted in their decreased expression. In addition, Ras stimulated downregulation of Nanog, a suppressor of endoderm differentiation in ES cells. These data suggest that Ras activation during EB differentiation plays a crucial role in initiation of extraembryonic endoderm differentiation.  相似文献   
6.
7.
Human metapneumovirus (hMPV) is one of the etiological agents of acute respiratory tract infections. From June 2005 to May 2006, we collected 185 clinical specimens from children in Osaka City, Japan, and detected 41 hMPV RNA. Of the 41 specimens, four (9.8%) also contained other viruses (3 with adenovirus [AdV] and 1 with respiratory syncytial virus [RSV]). The clinical symptoms of patients coinfected with AdV were indistinct from those of patients mono-infected with hMPV. The symptoms of the one patient co-infected with RSV were clinically severe. Further research is needed to clarify the effect of hMPV on other respiratory viruses or vice versa.  相似文献   
8.
The discovery of ceramide kinase (CerK), which phosphorylates ceramide (Cer) to ceramide 1-phisphate (C1P), established a new pathway for Cer metabolism. Among mouse tissues, brain contains the highest CerK activity. In this study, we found that CerK is highly expressed in cerebellar Purkinje cells. Since Purkinje cells are important for motor-related behaviors, we generated CerK-null mice and performed behavioral analyses. The CerK-null mice were healthy, and displayed no histological abnormalities. The mice lost CerK activity completely, suggesting that CerK is the only enzyme that phosphorylate Cer. However, cellular C1P levels were not different between the CerK-null and wild-type mice, indicating the presence of other C1P-producing pathway. The general motor-coordination was not impaired in the CerK-null mice, but emotional behavior was slightly affected. Our findings suggest that CerK is not necessary for survival at an individual level, but might be involved in higher brain function related to emotion.  相似文献   
9.
Acidocalcisomes are acidic calcium stores found in diverse organisms, being conserved from bacteria to man. They posses an acidic matrix that contains several cations bound to phosphates, mainly present in the form of short and long polyphosphate chains. Their matrix is acidified through the action of proton pumps such as a vacuolar proton ATPase and a vacuolar proton pyrophosphatase. The calcium uptake occurs through a Ca2+/H+ counter transporting ATPase located in the membrane of the organelle. Acidocalcisomes have been identified in a variety of microorganisms, including Apicomplexan parasites such as Plasmodium and Eimeria species, and in Toxoplasma gondii. In this paper, we review the structural, biochemical and physiological aspects of acidocalcisomes in Apicomplexan parasites and discuss their functional roles in the maintenance of intracellular ion homeostasis.  相似文献   
10.
Abstract: To explore target sites for endogenous d -serine that are different from the glycine site of the N -methyl- d -aspartate (NMDA) type glutamate receptor, we have studied the binding of d -[3H]serine to the synaptosomal P2 fraction prepared from the rat brain and peripheral tissues in the presence of an excess concentration (100 µ M ) of the glycine site antagonist 5,7-dichlorokynurenate (DCK). Nonspecific binding was defined in the presence of 1 m M unlabeled d -serine. Association, dissociation, and saturation experiments indicated that d -[3H]serine bound rapidly and reversibly to a single population of recognition sites in the cerebellar P2 fraction in the presence of DCK, with a K D of 614 n M and a B max of 2.07 pmol/mg of protein. d -Serine, l -serine, and glycine produced a total inhibition of the specific DCK-insensitive d -[3H]serine binding to the cerebellum with similar K i values. Strychnine and 7-chlorokynurenate failed to inhibit the binding at 10 µ M . The profiles of displacement of the DCK-insensitive d -[3H]serine binding by various amino acids and glutamate and glycine receptor-related compounds differ from those of any other defined recognition sites. DCK-insensitive d -[3H]serine binding was at high levels in the cerebral cortex and cerebellum but very low in the kidney and liver. The present findings indicate that the DCK-insensitive d -[3H]serine binding site could be a novel candidate for a target for endogenous d -serine in mammalian brains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号