首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   10篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   9篇
  2013年   10篇
  2012年   10篇
  2011年   15篇
  2010年   6篇
  2009年   8篇
  2008年   12篇
  2007年   15篇
  2006年   21篇
  2005年   12篇
  2004年   11篇
  2003年   15篇
  2002年   4篇
  2001年   7篇
  2000年   3篇
  1999年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1980年   2篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
1.
Neurotensin and somatostatin have both been shown to inhibit gastric acid secretion, but no interaction between these peptides has been demonstrated. To determine whether somatostatin might be a mediator of neurotensin's effect on pentagastrin-stimulated gastric acid secretion, we performed the following three experiments. First, we collected 0.2-ml samples of portal venous blood as frequently as every 5 min, and we confirmed a significant release of somatostatin-like immunoreactivity into portal venous blood during neurotensin-induced inhibition of acid secretion. This release of somatostatin-like immunoreactivity and inhibition of acid secretion were only seen in pentobarbital-anesthetized rats, but no sustained release of somatostatin-like immunoreactivity or inhibition of acid secretion occurred in urethane-anesthetized animals. In the second experiment, we analyzed portal plasma by high pressure liquid chromatography, and found that portal somatostatin-like immunoreactivity in blood collected during neurotensin infusion was composed of a single peak corresponding to somatostatin-14. In the third experiment, we found that infusion of antibody to somatostatin prevented neurotensin from inhibiting pentagastrin-stimulated acid secretion. Taken together, these data show that somatostatin, possibly from the stomach itself, is a necessary mediator of neurotensin's inhibitory effect in pentobarbital-anesthetized rats.  相似文献   
2.
3.
The study reports on chromosomes in several populations of social voles from south-eastern Europe and the Middle East. The standard karyotypes of individuals of Microtus hartingi and Microtus guentheri originating from both south-eastern Europe and Asia Minor comprised 54 mostly acrocentric chromosomes. However, variation between populations was found in the amount and distribution of C-heterochromatin in certain autosomes and the sex chromosomes. Furthermore, a specific pattern of argyrophilic nucleolar organizer region distribution was recorded in different geographic populations. In a population from Asia Minor, a heterozygous centric fusion of two autosomes was found. The G-banded karyotypes of M. guentheri and Microtus socialis were compared, and tandem fusions of autosomes were suggested as possible mechanism of the divergence. The karyotypes of the nine currently recognized species of social voles are reviewed, and implications of chromosomal data for systematics are evaluated.  相似文献   
4.
The α-carbonic anhydrase (CA, EC 4.2.1.1) from the extremophilic bacterium Sulfurihydrogenibium azorense (SazCA) was recently shown to be the fastest CA known. Here we investigated this enzyme for its activation with a series of amino acids and amines. The best SazCA activators were d-Phe, l-DOPA, l- and d-Trp, dopamine and serotonin, which showed activation constants in the range of 3–23 nM. l- and d-His, l-Phe, l-Tyr, 2-pyridyl-methylamine and L-adrenaline were also effective activators (KAs in the range of 62–90 nM), whereas d-Dopa, d-Tyr and several heterocyclic amines showed activity in the micromolar range. The good thermal stability, robustness, very high catalytic activity and propensity to be activated by simple amino acids and amines, make SazCA a very interesting candidate for biomimetic CO2 capture processes.  相似文献   
5.
6.
7.
The ability of the four-stranded guanine (G)-DNA motif to incorporate nonstandard guanine analogue bases 6-oxopurine (inosine, I), 6-thioguanine (tG), and 6-thiopurine (tI) has been investigated using large-scale molecular dynamics simulations. The simulations suggest that a G-DNA stem can incorporate inosines without any marked effect on its structure and dynamics. The all-inosine quadruplex stem d(IIII)(4) shows identical dynamical properties as d(GGGG)(4) on the nanosecond time scale, with both molecular assemblies being stabilized by monovalent cations residing in the channel of the stem. However, simulations carried out in the absence of these cations show dramatic differences in the behavior of d(GGGG)(4) and d(IIII)(4). Whereas vacant d(GGGG)(4) shows large fluctuations but does not disintegrate, vacant d(IIII)(4) is completely disrupted within the first nanosecond. This is a consequence of the lack of the H-bonds involving the N2 amino group that is not present in inosine. This indicates that formation of the inosine quadruplex could involve entirely different intermediate structures than formation of the guanosine quadruplex, and early association of cations in this process appears to be inevitable. In the simulations, the incorporation of 6-thioguanine and 6-thiopurine sharply destabilizes four-stranded G-DNA structures, in close agreement with experimental data. The main reason is the size of the thiogroup leading to considerable steric conflicts and expelling the cations out of the channel of the quadruplex stem. The G-DNA stem can accommodate a single thioguanine base with minor perturbations. Incorporation of a thioguanine quartet layer is associated with a large destabilization of the G-DNA stem whereas the all-thioguanine quadruplex immediately collapses.  相似文献   
8.
Nanoseconds long molecular dynamics (MD) trajectories of differently active complexes of human cyclin-dependent kinase 2 (inactive CDK2/ATP, semiactive CDK2/Cyclin A/ATP, fully active pT160-CDK2/Cyclin A/ATP, inhibited pT14-; pY15-; and pT14,pY15,pT160-CDK2/Cyclin A/ATP) were compared. The MD simulations results of CDK2 inhibition by phosphorylation at T14 and/or Y15 sites provide insight into the structural aspects of CDK2 deactivation. The inhibitory sites are localized in the glycine-rich loop (G-loop) positioned opposite the activation T-loop. Phosphorylation of T14 and both inhibitory sites T14 and Y15 together causes ATP misalignment for phosphorylation and G-loop conformational change. This conformational change leads to the opening of the CDK2 substrate binding box. The phosphorylated Y15 residue negatively affects substrate binding or its correct alignment for ATP terminal phospho-group transfer to the CDK2 substrate. The MD simulations of the CDK2 activation process provide results in agreement with previous X-ray data.  相似文献   
9.
This article presents a molecular dynamics (MD) study of the cdk2 enzyme and its two complexes with the inhibitors isopentenyladenine and roscovitine using the Cornell et al. force field from the AMBER software package. The results show that inserting an inhibitor into the enzyme active site does not considerably change enzyme structure but it seemingly changes the distribution of internal motions. The inhibitor causes differences in the domain motions in free cdk2 and in its complexes. It was found out that repulsion of roscovitine N9 substituent causes conformational change on Lys 33 side chain. Isopentenyladenine forms with Lys 33 side chain terminal amino group a hydrogen bond. It implies that the cavity, where N9 substituent of roscovitine is buried, can adopt larger substituent due to Lys 33 side chain flexibility. The composition of electrostatic and van der Waals interactions between the inhibitor and the enzyme were also calculated along both cdk2/inhibitor MD trajectories together with MM-PB/GBSA analysis. These results show that isopentenyladenine-like inhibitors could be more effective after modifications leading to an increase in their van der Waals contact with the enzyme. We suggest that a way leading to better inhibitors occupying isopentenyladenine binding mode could be: to keep N9 and N7 purine positions free, to keep 3,3-dimethylallylamino group at C6 position, and to add, e.g., benzylamino group at C2 position. The results support the idea that the isopentenyladenine binding mode can be used for cdk2 inhibitors design and that all possibilities to improve this binding mode were not uncovered yet.  相似文献   
10.
Two RNA sequences, AAA and AUG, were studied by the conformational search program CICADA and by molecular dynamics (MD) in the framework of the AMBER force field, and also via thorough PDB database search. CICADA was used to provide detailed information about conformers and conformational interconversions on the energy surfaces of the above molecules. Several conformational families were found for both sequences. Analysis of the results shows differences, especially between the energy of the single families, and also in flexibility and concerted conformational movement. Therefore, several MD trajectories (altogether 16 ns) were run to obtain more details about both the stability of conformers belonging to different conformational families and about the dynamics of the two systems. Results show that the trajectories strongly depend on the starting structure. When the MD start from the global minimum found by CICADA, they provide a stable run, while MD starting from another conformational family generates a trajectory where several different conformational families are visited. The results obtained by theoretical methods are compared with the thorough database search data. It is concluded that all except for the highest energy conformational families found in theoretical result also appear in experimental data. Registry numbers: adenylyl-(3' --> 5')-adenylyl-(3' --> 5')-adenosine [917-44-2] adenylyl-(3' --> 5')-uridylyl-(3' --> 5')-guanosine [3494-35-7].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号