首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   13篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   7篇
  2008年   3篇
  2007年   5篇
  2006年   11篇
  2005年   11篇
  2004年   10篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1979年   2篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
1.
Mouse stromal cell lines (FLS lines), established from the livers of 13-day gestation mouse fetus, supported the proliferation and differentiation of the erythroid progenitor cells from mouse fetal livers and bone marrow in a semisolid medium in the presence of erythropoietin. A large erythroid colony of over 1000 benzidine-positive erythroid cells was developed from a single erythroid progenitor cell on the FLS cell layer after 4 days of culture. When in close contact with the layer, the erythroid progenitor cells divided rapidly with an average generation time of 9.6 h and mature erythroid cells, including enucleated erythrocytes, were produced. The present studies demonstrate that the microenvironment created by the stromal cells can support the rapid expansion of erythropoietic cell population in the fetal liver of mice.  相似文献   
2.
3.
4.
Myelin sheath formation depends on appropriate axo-glial interactions that are mediated by myelin-specific surface molecules. In this study, we have used quantitative morphological analysis to determine the roles of the prominent myelin lipids galactocerebroside (GalC) and sulfatide in both central and peripheral myelin formation, exploiting mutant mice incapable of synthesizing these lipids. Our results demonstrate a significant increase in uncompacted myelin sheaths, the frequency of multiple cytoplasmic loops, redundant myelin profiles, and Schmidt-Lanterman incisures in the CNS of these mutant mice. In contrast, PNS myelin appeared structurally normal in these animals; however, at post-natal day 10, greater than 10% of the axons withered and pulled away from their myelin sheaths. These results indicate that GalC and sulfatide are critical to the formation of CNS myelin. In contrast, PNS myelin formation is not dependent on these lipids; however, GalC and sulfatide appear to be instrumental in maintaining Schwann cell-axon contact during a specific developmental window.  相似文献   
5.
Reticuline is a key compound in the biosynthetic pathway for isoquinoline alkaloids in plants, which include morphine, codeine and berberine. We established cultured California poppy (Eschscholzia californica) cells, in which berberine bridge enzyme (BBE) was knocked down by RNA interference, to accumulate the important key intermediate reticuline. Both BBE mRNA accumulation and enzyme activity were effectively suppressed in transgenic cells. In these transgenic cells, end-products of isoquinoline alkaloid biosynthesis, such as sanguinarine, were considerably reduced and reticuline was accumulated at a maximum level of 310 μg/g-fresh weight. In addition, 1 g-fresh weight of these cells secreted significant amounts of reticuline into the medium, with a maximum level of 6 mg/20 mL culture medium. These cells also produced a methylated derivative of reticuline, laudanine, which could scarcely be detected in control cells. We discuss the potential application of RNAi technology in metabolic modification and the flexibility of plant secondary metabolism.  相似文献   
6.
7.
8.
9.
Consequences of NPC1 and NPC2 loss of function in mammalian neurons   总被引:7,自引:0,他引:7  
Genetic deficiency of NPC1 or NPC2 results in a devastating cholesterol-glycosphingolipidosis of brain and other organs known as Niemann-Pick type C (NPC) disease. While NPC1 is a transmembrane protein believed involved in retroendocytic shuttling of substrate(s) to the Golgi and possibly elsewhere in cells as part of an essential recycling/homeostatic control mechanism, NPC2 is a soluble lysosomal protein known to bind cholesterol. The precise role(s) of NPC1 and NPC2 in endosomal-lysosomal function remain unclear, nor is it known whether the two proteins directly interact as part of this function. The pathologic features of NPC disease, however, are well documented. Brain cells undergo massive intracellular accumulation of glycosphingolipids (lactosylceramide, glucosylceramide, GM2 and GM3 gangliosides) and cholesterol and concomitant distortion of neuron shape (meganeurite formation). In neurons from humans with NPC disease the metabolic defects and storage often lead to extensive growth of new, ectopic dendrites (possibly linked to ganglioside sequestration) as well as formation of neurofibrillary tangles (NFTs) (possibly linked to dysregulation of cholesterol metabolism). Other features of cellular pathology in NPC disease include fragmentation of the Golgi apparatus and neuroaxonal dystrophy, though reasons for these changes remain largely unknown. As the disease progresses, neurodegeneration is also apparent for neurons in some brain regions, particularly Purkinje cells of the cerebellum, but the basis of this selective neuronal vulnerability is unknown. The NPC1 protein is evolutionarily conserved with homologues reported in yeast to humans; NPC2 is reported in C. elegans to humans. While neurons in mammalian models of NPC1 and NPC2 diseases exhibit many changes that are remarkably similar to those in humans (e.g., endosomal/lysosomal storage, Golgi fragmentation, neuroaxonal dystrophy, neurodegeneration), a reduced degree of ectopic dendritogenesis and an absence of NFTs in these species suggest important differences in the way lower mammalian neurons respond to NPC1/NPC2 loss of function.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号