首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64656篇
  免费   5099篇
  国内免费   650篇
  2023年   254篇
  2022年   627篇
  2021年   1345篇
  2020年   854篇
  2019年   1047篇
  2018年   1445篇
  2017年   1222篇
  2016年   1982篇
  2015年   3158篇
  2014年   3580篇
  2013年   4094篇
  2012年   5195篇
  2011年   5048篇
  2010年   3201篇
  2009年   2822篇
  2008年   3887篇
  2007年   3731篇
  2006年   3310篇
  2005年   3091篇
  2004年   2820篇
  2003年   2486篇
  2002年   2188篇
  2001年   1811篇
  2000年   1684篇
  1999年   1406篇
  1998年   597篇
  1997年   534篇
  1996年   423篇
  1995年   370篇
  1994年   352篇
  1993年   289篇
  1992年   566篇
  1991年   535篇
  1990年   462篇
  1989年   438篇
  1988年   361篇
  1987年   314篇
  1986年   274篇
  1985年   273篇
  1984年   203篇
  1983年   182篇
  1982年   153篇
  1981年   150篇
  1979年   178篇
  1978年   142篇
  1977年   120篇
  1976年   111篇
  1975年   130篇
  1974年   151篇
  1973年   122篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Desulfurization of model and diesel oils by resting cells of Gordona sp.   总被引:2,自引:0,他引:2  
The desulfurization activity of the resting cells of Gordona sp. CYKS1 was strongly depended on harvest time and the highest value when the cells had been harvested in the early growth phase (0.12 mg sulfur g–1 cell–1 h–1). For the model oil, hexadecane containing dibenzothiophene, the specific desulfurization rate decreased as the reaction proceeded. Both the specific and the volumetric desulfurization rates were not significantly affected by the aqueous-to-oil phase ratio. The diesel oils, light gas oil and a middle distillate unit feed were desulfurized at higher rates (ca. 0.34 mg sulfur g–1 cell–1 h–1) than the model oil (0.12 mg sulfur g–1 cell–1 h–1).  相似文献   
2.
The yeast Saccharomyces cerevisiae possesses two distinct glycyl-tRNA synthetase (GlyRS) genes: GRS1 and GRS2. GRS1 is dually functional, encoding both cytoplasmic and mitochondrial activities, while GRS2 is dysfunctional and not required for growth. The protein products of these two genes, GlyRS1 and GlyRS2, are much alike but are distinguished by an insertion peptide of GlyRS1, which is absent from GlyRS2 and other eukaryotic homologues. We show that deletion or mutation of the insertion peptide modestly impaired the enzyme''s catalytic efficiency in vitro (with a 2- to 3-fold increase in Km and a 5- to 8-fold decrease in kcat). Consistently, GRS2 can be conveniently converted to a functional gene via codon optimization, and the insertion peptide is dispensable for protein stability and the rescue activity of GRS1 at 30°C in vivo. A phylogenetic analysis further showed that GRS1 and GRS2 are paralogues that arose from a gene duplication event relatively recently, with GRS1 being the predecessor. These results indicate that GlyRS2 is an active enzyme essentially resembling the insertion peptide-deleted form of GlyRS1. Our study suggests that the insertion peptide represents a novel auxiliary domain, which facilitates both productive docking and catalysis of cognate tRNAs.  相似文献   
3.
4.
Secretion of levansucrase from Zymomonas mobilis in Escherichiacoli by glycine supplement was investigated. A significant amount of levansucrase (about 25% of total activity) was found in intact whole-cells. Cell fractionation experiments showed that levansucrase was found both in the periplasmic space and in the cytoplasmic fraction of E. coli. None or only trace amounts of levansucrase was detected in the extracellular culture broth at 24 h of cultivation and it accrued with the increasing concentration of glycine in the culture medium and duration of the culture period. Optimal glycine concentration for the maximum secretion of levansucrase was in the range of 0.8-1%, in which approximately 20-50% of levansucrase was released into the extracellular fraction at 24 h of cultivation, although glycine retarded the bacterial growth.  相似文献   
5.
The genome of Mus domesticus has multiple genes of the alpha 1-acid glycoprotein (AGP). Two cDNA clones were identified corresponding to AGP-1 and AGP-2. Moreover, two alleles of AGP-1 exist in inbred mice. The genomic DNA of the AGP-2 gene has been cloned and studied. Here we report the genomic organization of three M. domesticus AGP genes, the sequence analysis of the AGP-3 genomic DNA, and the expression of the AGP-3 gene. The major structural differences between AGP-2 and AGP-3 genes are located in introns 1 and 5. The low level of AGP-3 mRNA can be detected by the polymerase chain reaction (PCR). The molecular basis of the low level expression of AGP-3 and the possible classification of AGP-3 as a pseudogene are discussed.  相似文献   
6.
7.
Ciliated tracheal epithelia cell cultures were investigated immunocytochemically with anti-tubulin and colloidal gold. When rabbit tracheal cultures were fixed in paraformaldehyde, treated with acetone, anti-tubulin and a second antibody coupled to FITC, fluorescence was associated with cytoskeletal and axonemal microtubules. Cilia covering the apical surface of the ciliated tracheal cells fluoresced very brightly thus facilitating identification of this cell type. Electron microscopy of tracheal cultures fixed as above, treated with Triton-X 100 and incubated in anti-tubulin and protein A coupled to colloidal gold resulted in the highly specific localization of tubulin in ciliary axonemes and basal bodies. Omission of primary or secondary antibody resulted in extremely low levels of fluorescence while no colloidal gold particles could be detected in cultures at the electron microscopy level when rabbit anti-tubulin was omitted.  相似文献   
8.
9.
10.
A key intermediate in translocation is an ‘unlocked state’ of the pre‐translocation ribosome in which the P‐site tRNA adopts the P/E hybrid state, the L1 stalk domain closes and ribosomal subunits adopt a ratcheted configuration. Here, through two‐ and three‐colour smFRET imaging from multiple structural perspectives, EF‐G is shown to accelerate structural and kinetic pathways in the ribosome, leading to this transition. The EF‐G‐bound ribosome remains highly dynamic in nature, wherein, the unlocked state is transiently and reversibly formed. The P/E hybrid state is energetically favoured, but exchange with the classical P/P configuration persists; the L1 stalk adopts a fast dynamic mode characterized by rapid cycles of closure and opening. These data support a model in which P/E hybrid state formation, L1 stalk closure and subunit ratcheting are loosely coupled, independent processes that must converge to achieve the unlocked state. The highly dynamic nature of these motions, and their sensitivity to conformational and compositional changes in the ribosome, suggests that regulating the formation of this intermediate may present an effective avenue for translational control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号