首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  25篇
  2021年   2篇
  2017年   1篇
  2014年   3篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  1998年   1篇
  1992年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
Clitocypin, a new type of cysteine proteinase inhibitor from the mushroom Clitocybe nebularis, is a 34-kDa homodimer lacking disulphide bonds, reported to have unusual stability properties. Sequence similarity is limited solely to certain proteins from mushrooms. Infrared spectroscopy shows that clitocypin is a high beta-structure protein which was lost at high temperatures. The far UV circular dichroism spectrum is not that of classical beta-structure, but similar to those of a group of small beta-strand proteins, with a peak at 189nm and a trough at 202nm. An aromatic peak at 232nm and infrared bands at 1633 and 1515cm(-1) associated with the peptide backbone and the tyrosine microenvironment, respectively, were used to characterize the thermal unfolding. The reversible transition has a midpoint at 67 degrees C, with DeltaG=34kJ/mol and DeltaH=300kJ/mol, and is, unusually, independent of protein concentration. The kinetics of thermal unfolding and refolding are slow, with activation energies of 167 and 44kJ/mol, respectively. A model for folding and assembly is discussed.  相似文献   
2.
The basidiomycetous genus Wallemia is an active inhabitant of hypersaline environments, and it has recently been described as comprising three halophilic and xerophilic species: Wallemia ichthyophaga, Wallemia muriae, and Wallemia sebi. Considering the important protective role the fungal cell wall has under fluctuating physicochemical environments, this study was focused on cell morphology changes, with particular emphasis on the structure of the cell wall, when these fungi were grown in media with low and high salinities. We compared the influence of salinity on the morphological characteristics of Wallemia spp. by light, transmission, and focused-ion-beam/scanning electron microscopy. W. ichthyophaga was the only species of this genus that was metabolically active at saturated NaCl concentrations. W. ichthyophaga grew in multicellular clumps and adapted to the high salinity with a significant increase in cell wall thickness. The other two species, W. muriae and W. sebi, also demonstrated adaptive responses to the high NaCl concentration, showing in particular an increased size of mycelial pellets at the high salinities, with an increase in cell wall thickness that was less pronounced. The comparison of all three of the Wallemia spp. supports previous findings relating to the extremely halophilic character of the phylogenetically distant W. ichthyophaga and demonstrates that, through morphological adaptations, the eukaryotic Wallemia spp. are representative of eukaryotic organisms that have successfully adapted to life in extremely saline environments.Hypersaline habitats had long been considered to be populated almost exclusively by prokaryotic organisms and the research on hypersaline environments had consequently been monopolized by bacteriologists. In 2000, the first reports appeared showing that fungi are active inhabitants of solar salterns (20). Until then, fungi able to survive in environments with a low amount of biologically available water (low water activity [aw]) were only known as contaminants of foods preserved with high concentrations of salt or sugar. Since their first discovery in salterns, many new species have been discovered in natural hypersaline environments around the world, including some species that were previously known only as food-borne contaminants. Due to these discoveries, fungi are now recognized as an integral part of indigenous halophilic microbial communities since they can grow and adjust across the whole salinity range, from freshwater to almost saturated NaCl solutions (49). Most fungi differ from the majority of halophilic prokaryotes (16): they tend to be extremely halotolerant rather than halophilic and do not require salt to remain viable, with the exception of Wallemia spp.The order Wallemiales (Wallemiomycetes, Basidiomycota) was only recently introduced to define the single genus Wallemia, a phylogenetic maverick in the Basidiomycota (49). Until 2005, this genus contained only the species W. sebi. However, taxonomic analyses of isolates from sweet, salty, and dried foods (41) and from hypersaline evaporation ponds in the Mediterranean Sea, the Caribbean, and the Dead Sea (45, 49) have resolved this genus into three species: W. ichthyophaga, W. muriae, and W. sebi. The first two of these three Wallemia spp. require additional solutes in the growth media, and W. ichthyophaga is the most halophilic eukaryote described to date, since it cannot grow without the addition of 9% NaCl (wt/vol), and it still shows growth at aw of 0.77, equivalent to 30% NaCl (wt/vol) (49).The survival, and especially the growth, of microorganisms in highly saline environments requires numerous adaptations (6, 18, 21, 34). The dominant representatives and the most thoroughly investigated halophilic fungi in hypersaline waters of the salterns are the black yeasts, and particularly the model organism Hortaea werneckii (20). An important level of adaptation of the black yeasts to high salinity is seen in their extremophilic ecotype, which is characterized by a special meristematic morphology and changes in cell wall structure and pigmentation (27). Other fungal osmoadaptations include the accumulation of osmolytes (27, 28, 40), the extrusion of sodium (5), modification of the plasma membrane (44) and the cell wall, and even changes in fungal colony morphology (27).The fungal cell wall is the first line of defense against environmental stress; therefore, adaptation at the cell wall level is expected to have one of the most important roles for successful growth at a low aw (24, 32). The cell wall is essential for maintaining the osmotic homeostasis of cells, since it protects them against mechanical damage as well as high concentrations of salts (7). The central fibrillar glycan network of the cell wall is embedded in highly flexible amorphous cement, which allows considerable stretching with changing osmotic pressure (14, 29). Its balance between a rigid and a dynamic structure influences the shape of cells (14) and enables growth and hyphal branching (11).Since the species within the genus Wallemia have been recognized only recently (49), little is known about their mechanisms of adaptation to high salinity. To investigate the effects of low and high NaCl concentrations on cell morphology, with particular emphasis on cell wall ultrastructure, we compared W. ichthyophaga, the most halophilic fungal species known thus far, with the related xerophilic W. muriae and W. sebi. Micrographs were prepared by using light, transmission, and scanning electron microscopy. The results reveal how this eukaryotic genus uses adaptations at the cell wall level for thriving in extremely saline environments.  相似文献   
3.
4.
The unique response of desiccation-tolerant, or resurrection plants, to extreme drought is accompanied by major changes in the protein pool, raising the possibility of the involvement of proteases. We detected and characterized proteases present in their active state in leaf extracts of desiccated Ramonda serbica Pan?., a resurrection plant from the Balkan Peninsula. Plants desiccated under laboratory conditions and maintained in anhydrobiosis for 4 and 14 months revived upon rehydration. Protease activities were determined spectrophotometrically in solution and by zymography on gels. Several endo- and aminopeptidases were detected and characterized by their pH profiles. Their enzyme class was determined using specific inhibitors. Those with higher activities were a serine endopeptidase active against Bz-Arg-pNA with a pH optimum around 9, and aminopeptidases optimally active at pHs from 7 to 9 against Leu-pNA, Met-pNA, Phe-pNA, Pro-pNA and Ala-pNA. The levels of their activities in leaf extracts from desiccated plants were significantly higher than those from rehydrated plants and from regularly watered plants, implying their involvement in the recovery of vegetative tissues from desiccation.  相似文献   
5.
Gaseous conditions at natural CO2 springs (mofettes) affect many processes in these unique ecosystems. While the response of plants to extreme and fluctuating CO2 concentrations ([CO2]) is relatively well documented, little is known on microbial life in mofette soil. Therefore, it was the aim of this study to investigate the abundance and diversity of CO2-fixing bacteria in grassland soils in different distances to a natural carbon dioxide spring. Samples of the same soil type were collected from the Stavešinci mofette, a natural CO2 spring which is known for very pure CO2 emissions, at different distances from the CO2 releasing vents, at locations that clearly differed in soil CO2 efflux (from 12.5 to over 200 μmol CO2 m−2 s−1 yearly average). Bulk and rhizospheric soil samples were included into analyses. The microbial response was followed by a molecular analysis of cbbL genes, encoding for the large subunit of RubisCO, a carboxylase which is of crucial importance for C assimilation in chemolitoautotrophic microbes. In all samples analyzed, the “red-like” type of cbbL genes could be detected. In contrast, the “green-like” type of cbbL could not be measured by the applied technique. Surprisingly, a reduction of “red-like” cbbL genes copies was observed in bulk soil and rhizosphere samples from the sites with the highest CO2 concentrations. Furthermore, the diversity pattern of “red-like” cbbL genes changed depending on the CO2 regime. This indicates that only a part of the autotrophic CO2-fixing microbes could adapt to the very high CO2 concentrations and adverse life conditions that are governed by mofette gaseous regime. Urška Videmšek, Alexandra Hagn, Michael Schloter, and Dominik Vodnik contributed equally to this study.  相似文献   
6.
7.
Despite highly conserved core catalytic domains, members of the metallophosphoesterase (MPE) superfamily perform diverse and crucial functions ranging from nucleotide and nucleic acid metabolism to phospholipid hydrolysis. Unique structural elements outside of the catalytic core called “cap domains” are thought to provide specialization to these enzymes; however, no directed study has been performed to substantiate this. The cap domain of Rv0805, an MPE from Mycobacterium tuberculosis, is located C-terminal to its catalytic domain and is dispensable for the catalytic activity of this enzyme in vitro. We show here that this C-terminal extension (CTE) mediates in vivo localization of the protein to the cell membrane and cell wall as well as modulates expression levels of Rv0805 in mycobacteria. We also demonstrate that Rv0805 interacts with the cell wall of mycobacteria, possibly with the mycolyl-arabinogalactan-peptidoglycan complex, by virtue of its C terminus, a hitherto unknown property of this MPE. Using a panel of mutant proteins, we identify interactions between active site residues of Rv0805 and the CTE that determine its association with the cell wall. Finally, we show that Rv0805 and a truncated mutant devoid of the CTE produce different phenotypic effects when expressed in mycobacteria. Our study thus provides a detailed dissection of the functions of the cap domain of an MPE and suggests that the repertoire of cellular functions of MPEs cannot be understood without exploring the modulatory effects of these subdomains.  相似文献   
8.
Fungi from the food-borne basidiomycetous genus Wallemia, which comprises Wallemia ichthyophaga, Wallemia muriae and Wallemia sebi, are among the most xerophilic organisms described. Their morphological adaptations to life at high NaCl concentrations are reflected in increased cell-wall thickness and size of cellular aggregates. The objectives of this study were to examine their growth and to define cell morphology and any ultrastructural cell-wall changes when these fungi are grown in low and high glucose and honey concentrations, as environmental osmolytes. We analysed their growth parameters and morphological characteristics by light microscopy and transmission and scanning electron microscopy.Wallemia ichthyophaga grew slowly in all of the sugar-based media, while W. muriae and W. sebi demonstrated better growth. Wallemia ichthyophaga adapted to the high glucose and honey concentrations with formation of larger cellular aggregates, while cell-wall thickness was increased only at the high glucose concentration. Wallemia muriae and W. sebi demonstrated particularly smaller sizes of hyphal aggregates at the high glucose concentration, and different and less explicit changes in cell-wall thickness. Adaptive responses show that the phylogenetically more distant W. ichthyophaga is better adapted to high salt conditions, whereas W. muriae and W. sebi cope better with a high sugar environment.  相似文献   
9.
Mycobacteria harbor unique proteins that regulate protein lysine acylation in a cAMP-regulated manner. These lysine acyltransferases from Mycobacterium smegmatis (KATms) and Mycobacterium tuberculosis (KATmt) show distinctive biochemical properties in terms of cAMP binding affinity to the N-terminal cyclic nucleotide binding domain and allosteric activation of the C-terminal acyltransferase domain. Here we provide evidence for structural features in KATms that account for high affinity cAMP binding and elevated acyltransferase activity in the absence of cAMP. Structure-guided mutational analysis converted KATms from a cAMP-regulated to a cAMP-dependent acyltransferase and identified a unique asparagine residue in the acyltransferase domain of KATms that assists in the enzymatic reaction in the absence of a highly conserved glutamate residue seen in Gcn5-related N-acetyltransferase-like acyltransferases. Thus, we have identified mechanisms by which properties of similar proteins have diverged in two species of mycobacteria by modifications in amino acid sequence, which can dramatically alter the abundance of conformational states adopted by a protein.  相似文献   
10.
Mycobacterium tuberculosis is an important human pathogen and has developed sophisticated mechanisms to evade the host immune system. These could involve the use of cyclic nucleotide-dependent signaling systems, since the M. tuberculosis genome encodes a large number of functional adenylyl cyclases. Using bioinformatic approaches, we identify, clone, and biochemically characterize the Rv0805 gene product, the first cyclic nucleotide phosphodiesterase identified in M. tuberculosis and a homologue of the cAMP phosphodiesterase present in Escherichia coli (cpdA). The Rv0805 gene product, a class III phosphodiesterase, is a member of the metallophosphoesterase family, and computational modeling and mutational analyses indicate that the protein possesses interesting properties not reported earlier in this class of enzymes. Mutational analysis of critical histidine and aspartate residues predicted to be essential for metal coordination reduced catalytic activity by 90-50%, and several mutant proteins showed sigmoidal kinetics with respect to Mn in contrast to the wild-type enzyme. Mutation of an asparagine residue in the GNHD motif that is conserved throughout the metallophosphoesterase enzymes almost completely abolished catalytic activity, and these studies therefore represent the first mutational analysis of this class of phosphodiesterases. The Rv0805 protein hydrolyzes cAMP and cGMP in vitro, and overexpression in Mycobacterium smegmatis and E. coli reduces intracellular cAMP levels. The presence of an orthologue of Rv0805 in Mycobacterium leprae suggests that the Rv0805 protein could have an important role to play in regulating cAMP levels in these bacteria and adds an additional level of complexity to cyclic nucleotide signaling in this organism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号