首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Physiology and Molecular Biology of Plants - Fungicides are widely used for controlling fungi in crop plants. However, their roles in conferring abiotic stress tolerance are still elusive. In this...  相似文献   
2.
Nitric oxide (NO) is dynamic molecule implicated in diverse biological functions demonstrating its protective effect against damages provoked by abiotic stresses. The present study investigated that exogenous NO pretreatment (500?µM sodium nitroprusside, 24?h) prevented the adverse effect of drought stress [induced by 10% and 20% polyethylene glycol (PEG), 48?h] on rapeseed seedlings. Drought stress resulted in reduced relative water content with increased proline (Pro) level. Drought stress insisted high H2O2 generation and consequently increased membrane lipid peroxidation which are clear indications of oxidative damage. Drought stress disrupted the glyoxalase system too. Exogenous NO successfully alleviated oxidative damage effects on rapeseed seedlings through improving the levels of nonenzymatic antioxidant pool and upregulating antioxidant enzymes’ activities. Improvement of glyoxalase system (glyoxalase I and glyoxalase II activities) by exogenous NO was significant to improve plants’ tolerance. Nonetheless, regulation of Pro level and improvement of plant–water status were vital to confer drought stress tolerance.  相似文献   
3.
Cadmium (Cd) is a toxic metal and an environmental pollutant that significantly reduces plant growth and productivity. Proper management can ameliorate dysfunction and improve the plant growth and productivity exposed to Cd. Therefore, the present study was conducted to explore the protective role of the fungicides tebuconazole (TEB) and trifloxystrobin (TRI) in helping wheat (Triticum aestivum L. cv. Norin 61) seedlings to tolerate Cd. Five-day-old hydroponically grown seedlings were allowed to mild (0.25 mM CdCl2) and severe (0.5 mM CdCl2) Cd stress separately and with the fungicides (2.75 µM TEB + 1.0 µM TRI) for the next four days. Compared to control, the level of H2O2 in the seedlings exposed to mild and severe Cd stress alone increased by 81 and 112%, respectively. The accumulation of Cd also increased in the wheat seedlings along with declining mineral nutrients under Cd stress. The protective effect of TEB and TRI was observed with the enhancement of the antioxidant defense and methylglyoxalase systems and reduction in oxidative damage. Applying TEB and TRI reduced MDA (by 9 and 18%), EL (by 21 and 17%), MG (by 12 and 17%), and LOX activity (by 37 and 27%), respectively, relative to Cd stress alone. Cadmium uptake also decreased in the shoots (by 48 and 50%, respectively) and roots (by 23 and 25%, respectively) of the fungicide-treated wheat seedlings under mild and severe Cd stress, relative to stress alone. These results indicate the exogenous application of TEB and TRI is a promising approach to improve Cd tolerance in wheat plants. Further investigation is needed under field conditions and for other crop species to determine the Cd-tolerance induced by TEB and TRI application.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号